Biopolymers and Nanocomposites in Civil Engineering Applications

In a new dawn of environmental degradation resulting from the unplanned use of conventional material resources, there is a renewed urge for extensive research and innovation on the beneficial use of biopolymers and nanocomposites for civil engineering applications. The chapter examines in depth the applications of biopolymers and nanocomposites in civil engineering infrastructures in order to meet the twin targets of sustainability and environmental friendliness which are vital to the continued life on earth.

[1]  E. Kavazanjian,et al.  Biopolymer soil stabilization for wind erosion control , 2009 .

[2]  Yong Zhang,et al.  Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites , 2003 .

[3]  J. Hamilton,et al.  Microfibrillated cellulose: morphology and accessibility , 1983 .

[4]  R. Costanza,et al.  The Perfect Spill: Solutions for Averting the Next Deepwater Horizon , 2010 .

[5]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[6]  P. Vikesland,et al.  Environmental science and engineering applications of nanocellulose-based nanocomposites , 2014 .

[7]  J. Carlos Santamarina,et al.  Biological Considerations in Geotechnical Engineering , 2005 .

[8]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[9]  R. E. Thorne,et al.  The Exxon Valdez oil spill and the collapse of the prince William sound herring stock: A reexamination of critical biomass estimates , 2014 .

[10]  Alain Dufresne,et al.  Nanocellulose: a new ageless bionanomaterial , 2013 .

[11]  T. Budtova,et al.  Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. , 2008, Biomacromolecules.

[12]  R. Gkaidatzis,et al.  Bio-based FRP structures: A pedestrian bridge in Schiphol Logistics Park , 2014 .

[13]  P. Reddy,et al.  EXPERIMENTAL STUDY OF BEHAVIOUR OF POULTRY FEATHER FIBER - A REINFORCING MATERIAL FOR COMPOSITES , 2014 .

[14]  W. Gacitúa,et al.  POLYMER NANOCOMPOSITES: SYNTHETIC AND NATURAL FILLERS A REVIEW , 2005 .

[15]  A. Ortmann,et al.  Dispersed Oil Disrupts Microbial Pathways in Pelagic Food Webs , 2012, PloS one.

[16]  K. R. Sandberg,et al.  Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential , 1983 .

[17]  Kasthurirangan Gopalakrishnan,et al.  Sustainable bioenergy and bioproducts : value added engineering applications , 2012 .

[18]  L. Hollaway,et al.  Epoxy-layered silicate nanocomposites in civil engineering , 2006 .

[19]  Nicole Grobert,et al.  Carbon nanotubes – becoming clean , 2007 .

[20]  B. F. Yousif,et al.  In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres , 2013 .

[21]  Wenshuai Chen,et al.  Comparative study of aerogels obtained from differently prepared nanocellulose fibers. , 2014, ChemSusChem.

[22]  Chunyu Li,et al.  Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites , 2007 .

[23]  Johann Plank,et al.  Applications of Biopolymers in Construction Engineering , 2005 .

[24]  A. Georgiades,et al.  Impact of hardening conditions on to stabilized/solidified products of cement–sewage sludge–jarosite/alunite , 2007 .

[25]  M. Peterson,et al.  Impacts of oil spill disasters on marine habitats and fisheries in North America , 2014 .

[26]  Jerome J. Connor,et al.  Robust Flexible Capacitive Surface Sensor for Structural Health Monitoring Applications , 2013 .

[27]  N. Zhu,et al.  Leaching behavior of heavy metals from sewage sludge solidified by cement-based binders. , 2013, Chemosphere.

[28]  Shaoqi Zhou,et al.  Utilization of municipal sewage sludge as additives for the production of eco-cement. , 2012, Journal of hazardous materials.

[29]  M. Loizidou,et al.  The effect of bentonite/cement mortar for the stabilization/solidification of sewage sludge containing heavy metals , 2008 .

[30]  Takashi Taniguchi,et al.  New films produced from microfibrillated natural fibres , 1998 .

[31]  Melissa M. Bilec,et al.  Sustainability assessments of bio-based polymers , 2013 .

[32]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[33]  John N. cernica Geotechnical Engineering: Soil Mechanics , 1994 .

[34]  Yi-Lin Chung,et al.  Preparation and properties of biodegradable starch–clay nanocomposites , 2010 .

[35]  Richard G. Little,et al.  Controlling Cascading Failure: Understanding the Vulnerabilities of Interconnected Infrastructures , 2002 .

[36]  Henry Darcy Recherches expérimentales relatives au mouvement de l'eau dans les tuyaux , 1857 .

[37]  Qiming Chen,et al.  Mechanistic–empirical analysis of the results of finite element analysis on flexible pavement with geogrid base reinforcement , 2014 .

[38]  Jingxin Wang,et al.  Advanced Cellulosic Nanocomposite Materials , 2011 .

[39]  L. Avérous,et al.  Bio-nanocomposites based on starch , 2011 .

[40]  P. Kumar,et al.  Recent Advances in Biopolymers and Biopolymer-Based Nanocomposites for Food Packaging Materials , 2012, Critical reviews in food science and nutrition.

[41]  K. Konhauser Introduction to geomicrobiology , 2006 .

[42]  Yu-Hsing Wang,et al.  Specific surface: determination and relevance , 2002 .

[43]  P. Zavattieri,et al.  Anisotropy of the elastic properties of crystalline cellulose Iβ from first principles density functional theory with Van der Waals interactions , 2013, Cellulose.

[44]  L. Ge,et al.  Effects of chemical stabilizers on an expansive clay , 2013, KSCE Journal of Civil Engineering.

[45]  Markus Antonietti,et al.  Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. , 2015, Nature nanotechnology.

[46]  Thomas Keller,et al.  A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications , 2015 .

[47]  Brian C. Black Crude Reality: Petroleum in World History , 2012 .

[48]  Jaehwan Kim,et al.  Review of nanocellulose for sustainable future materials , 2015, International Journal of Precision Engineering and Manufacturing-Green Technology.

[49]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[50]  D. R. Cullimore,et al.  Structure of a black plug layer in a turfgrass putting sand green , 1990 .

[51]  Renduo Zhang,et al.  EXPERIMENTAL STUDY ON THE REDUCTION OF SOIL HYDRAULIC CONDUCTIVITY BY ENHANCED BIOMASS GROWTH , 1997 .

[52]  M. Jonoobi,et al.  Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion , 2010 .

[53]  Stefan Lechtenböhmer,et al.  The potential for large-scale savings from insulating residential buildings in the EU , 2011 .

[54]  María Blanca Roncero Vivero,et al.  Inter-laboratory comparisons of hexenuronic acid measurements in kraft eucalyptus pulps using a UV-Vis spectroscopic method , 2014 .

[55]  Seki,et al.  Effects of microorganisms on hydraulic conductivity decrease in infiltration , 1998 .

[56]  Anastasia Zabaniotou,et al.  Utilization of sewage sludge in EU application of old and new methods--A review , 2008 .

[57]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[58]  Fernando Pacheco-Torgal,et al.  Introduction to biopolymers and biotech admixtures for eco-efficient construction materials , 2016 .

[59]  Jiakuan Yang,et al.  Durability of autoclaved construction materials of sewage sludge–cement–fly ash–furnace slag , 2013 .

[60]  S. Akbulut,et al.  The Dynamic Shear Modulus and Damping Ratio of Clay Nanocomposites , 2014, Clays and Clay Minerals.

[61]  Luisa F. Cabeza,et al.  Nearly Zero Energy Building Refurbishment : A Multidisciplinary Approach , 2013 .

[62]  Robert E. Sojka,et al.  Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications , 2007 .

[63]  Reuben H. Karol,et al.  Chemical Grouting And Soil Stabilization, Revised And Expanded , 2003 .

[64]  Murad Abu-Farsakh,et al.  Implementation of a Critical State Two-Surface Model to Evaluate the Response of Geosynthetic Reinforced Pavements , 2010 .

[65]  K. Seto,et al.  Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools , 2012, Proceedings of the National Academy of Sciences.

[66]  John Evans,et al.  Approaches to the manufacture of layered nanocomposites , 2012 .

[67]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[68]  V. Lumelsky,et al.  Sensitive skin , 2000, IEEE Sensors Journal.

[69]  L. Robeson,et al.  Polymer nanotechnology: Nanocomposites , 2008 .

[70]  Vesa Penttala,et al.  Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites , 2008 .

[71]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[72]  Jie Cai,et al.  Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. , 2012, Angewandte Chemie.

[73]  Franz-Josef Ulm,et al.  Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale , 2007 .

[74]  Magnus Wålinder The new journal Wood Material Science and Engineering , 2006 .

[75]  R. Nugent,et al.  The Effects of Exopolymers on the Erosional Resistance of Cohesive Sediments , 2010 .

[76]  L. D. Norton,et al.  EFFECT OF WATER CHEMISTRY AND SOIL AMENDMENTS ON A SILT LOAM SOIL—PART 1: INFILTRATION AND RUNOF , 1997 .

[77]  H. Fischer Polymer nanocomposites: from fundamental research to specific applications , 2003 .

[78]  W. Brostow,et al.  WOOD AND WOOD DERIVED MATERIALS , 2010 .

[79]  V. Tan,et al.  Advanced thermal insulation and absorption properties of recycled cellulose aerogels , 2014 .

[80]  J. Picou,et al.  The Exxon Valdez and BP Oil Spills , 2012 .

[81]  N. Rodríguez,et al.  Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions , 2010 .

[82]  Sumi Siddiqua,et al.  Micro-structural analysis of strength development in low- and high swelling clays stabilized with magnesium chloride solution — A green soil stabilizer , 2015 .

[83]  L. Altomare,et al.  Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: Synthesis, characterization, and photocatalytic properties , 2013 .

[84]  Fernando Pacheco-Torgal,et al.  Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020 , 2014 .

[85]  R. Ladchumananandasivam,et al.  Physical and Morphological Structure of Chicken Feathers (Keratin Biofiber) in Natural, Chemically and Thermally Modified Forms , 2012 .

[86]  Imad L. Al-Qadi,et al.  Cost-effectiveness of using geotextiles in flexible pavements , 2007 .

[87]  Walter F. Schmidt,et al.  Polyethylene reinforced with keratin fibers obtained from chicken feathers , 2005 .

[88]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[89]  H. Tosun,et al.  The effect of magnesium chloride solution on the engineering properties of clay soil with expansive and dispersive characteristics , 2014 .

[90]  J. Chu,et al.  Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ , 2008 .

[91]  F. Gioia,et al.  The containment of oil spills in porous media using xanthan/aluminum solutions, gelled by gaseous CO2 or by AlCl3 solutions. , 2006, Journal of hazardous materials.

[92]  Hernan Charreau,et al.  Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. , 2012, Recent patents on nanotechnology.

[93]  Jerome J. Connor,et al.  Soft capacitive sensor for structural health monitoring of large‐scale systems , 2012 .

[94]  Renewable biomass-derived lignin in transportation infrastructure strengthening applications , 2013 .

[95]  Vistasp M. Karbhari Design Principles for Civil Structures , 2009 .

[96]  J M W Brownjohn,et al.  Structural health monitoring of civil infrastructure , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[97]  E. Sjöström Chapter 3 – WOOD POLYSACCHARIDES , 1993 .

[98]  T. Pradeep,et al.  Biopolymer-reinforced synthetic granular nanocomposites for affordable point-of-use water purification , 2013, Proceedings of the National Academy of Sciences.

[99]  Franz-Josef Ulm,et al.  Nanogranular origin of concrete creep , 2009, Proceedings of the National Academy of Sciences.

[100]  Daniel J. Inman,et al.  A wireless active sensing system for impedance-based Structural Health Monitoring , 2005 .

[101]  P. Mondal Nanomechanical properties of cementitious materials , 2008 .

[102]  K. Pendoley,et al.  Global Oil Spills and Oiled Wildlife Response Effort: Implications for Oil Spill Contingency Planning , 2014 .

[103]  Monica Ek,et al.  Pulping chemistry and technology , 2009 .

[104]  W. D. Kovacs,et al.  An Introduction to Geotechnical Engineering , 1981 .

[105]  Meng Feng,et al.  Thermal properties of poly(vinyl chloride)/montmorillonite nanocomposites , 2004 .

[106]  Kasthurirangan Gopalakrishnan,et al.  Sustainable Bioenergy and Bioproducts , 2012 .

[107]  Tianxi Liu,et al.  Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization , 2005 .

[108]  Thomas J. Pinnavaia,et al.  Polymer-layered silicate nanocomposites: an overview , 1999 .

[109]  Murad Y. Abu-Farsakh,et al.  Effect of Reinforcement on Resilient and Permanent Deformations of Base Course Material , 2007 .

[110]  Claire Y. Barlow,et al.  Life cycle assessments of biodegradable, commercial biopolymers—A critical review , 2013 .

[111]  S. Akbulut,et al.  Some Geotechnical Properties of Clay Nanocomposites , 2016 .

[112]  E. Sancak,et al.  Mechanical behaviour of chicken quills and chicken feather fibres reinforced polymeric composites , 2011 .

[113]  Roozbeh Rashedi,et al.  Capital renewal optimisation for large-scale infrastructure networks: genetic algorithms versus advanced mathematical tools , 2015 .

[114]  Alexander H.-D. Cheng,et al.  Materials Genome for Graphene-Cement Nanocomposites , 2013 .

[115]  T. Yen,et al.  Stabilization of Metals in Subsurface by Biopolymers: Laboratory Drainage Flow Studies , 2003 .

[116]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[117]  Menandro N. Acda,et al.  Waste chicken feather as reinforcement in cement-bonded composites , 2011 .

[118]  Jian Chu,et al.  Construction Biotechnology: a new area of biotechnological research and applications , 2015, World journal of microbiology & biotechnology.

[119]  Surendra P. Shah,et al.  Nanoscale Modification of Cementitious Materials , 2009 .

[120]  João A. Labrincha,et al.  Eco-efficient Construction and Building Materials , 2011 .

[121]  R. Bonser,et al.  The Young's modulus of feather keratin , 1995, The Journal of experimental biology.

[122]  Samira Baba Hamed,et al.  Rheological properties of biopolymers drilling fluids , 2009 .

[123]  Andong Liu,et al.  Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. , 2010, Biomacromolecules.

[124]  Debora F. Rodrigues,et al.  Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications , 2015 .

[125]  Donald W. Taylor,et al.  Fundamentals of soil mechanics , 1948 .

[126]  E. Ibem,et al.  URBAN ENVIRONMENTAL PROBLEMS IN NIGERIA: IMPLICATIONS FORSUSTAINABLE DEVELOPMENT , 2010 .

[127]  B. Olayiwola,et al.  Investigation into Physical and Mechanical Properties of Few Selected Chicken Feathers Commonly Found In Nigeria , 2014 .

[128]  B. C. Martinez,et al.  Biogeochemical processes and geotechnical applications: progress, opportunities and challenges , 2013 .

[129]  A. P. Jackson,et al.  A physical model of nacre , 1989 .

[130]  M. L. Lizárraga-Partida,et al.  The environmental legacy of the Ixtoc-I oil spill in Campeche Sound, southwestern Gulf of Mexico , 2014, Front. Mar. Sci..

[131]  Johann Plank,et al.  Applications of biopolymers and other biotechnological products in building materials , 2004, Applied Microbiology and Biotechnology.

[132]  David Plackett,et al.  Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .

[133]  Tremaine D. Gissentaner Development of Conductive Green Polymer Nano-Composite for use in Construction of Transportation Infrastructure , 2014 .

[134]  M. T. Paridah,et al.  A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications , 2016 .

[135]  T. Sabu,et al.  REVIEW OF RECENT RESEARCH IN NANO CELLULOSE PREPARATION FROM DIFFERENT LIGNOCELLULOSIC FIBERS , 2014 .

[136]  Edurne Erkizia,et al.  Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions , 2006 .

[137]  Xiaoneng Yang ARCHAEOLOGICAL PERSPECTIVES ON THE PRINCELY BURIALS OF THE MING DYNASTY ENFEOFFMENTS , 2012 .

[138]  Michaelangelo D. Tabone,et al.  Sustainability metrics: life cycle assessment and green design in polymers. , 2010, Environmental science & technology.

[139]  Teodora Zecheru Biopolymers for Military Use: Opportunities and Environment Implications - a Review , 2010 .

[140]  D A Parry,et al.  The molecular structure of reptilian keratin. , 1996, International journal of biological macromolecules.

[141]  Vanderley Moacyr John,et al.  Eco-efficient concrete , 2013 .

[142]  Teh Fu Yen,et al.  Biopolymer plugging effect: laboratory-pressurized pumping flow studies , 2003 .

[143]  T. Hazen,et al.  Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History , 2011, Environmental science & technology.

[144]  Jo Anne Shatkin,et al.  Market projections of cellulose nanomaterial-enabled products - Part 2: Volume estimates , 2014 .

[145]  Fernando Pacheco-Torgal,et al.  Toxicity of building materials , 2012 .

[146]  M. Katsioti,et al.  Properties of stabilized/solidified admixtures of cement and sewage sludge , 2007 .

[147]  R. Rachan,et al.  Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash , 2013 .

[148]  Stefan E. Schulenberg,et al.  The Deepwater Horizon Oil Spill and the Mississippi Gulf Coast: Mental health in the context of a technological disaster. , 2014, The American journal of orthopsychiatry.