A review of the statistical foundation of a class of probabilistic planning models

Abstract There exists a large group of probabilistic managerial planning models whose statistical problem consists of deriving the stochastic characteristics of a performance criterion defined as a function of several other random variables. This paper provides a unified statistical framework for such models by blending together various concepts and techniques in distribution theory and random-variate generation.

[1]  E. King,et al.  An Alternative to Monte Carlo Sampling in Stochastic Models , 1975 .

[2]  N. L. Johnson,et al.  Systems of Frequency Curves , 1969 .

[3]  I. D. Hill,et al.  Fitting Johnson Curves by Moments , 1976 .

[4]  G. J. Hahn,et al.  Statistical models in engineering , 1967 .

[5]  A. C. Atkinson A family of switching algorithms for the computer generation of beta random variables , 1979 .

[6]  Hon-Shiang Lau,et al.  Stochastic Breakeven Analysis , 1978 .

[7]  Russell C. H. Cheng Generating beta variates with nonintegral shape parameters , 1978, CACM.

[8]  Irving Kaplansky,et al.  A Common Error concerning Kurtosis , 1945 .

[9]  Charles S. Tapiero,et al.  Linear Breakeven Analysis Under Risk , 1975 .

[10]  Bruce W. Schmeiser,et al.  An approximate method for generating symmetric random variables , 1972, CACM.

[11]  Samuel Eilon,et al.  Sampling Procedures for Risk Simulation , 1973 .

[12]  A. Atkinson,et al.  The Computer Generation of Beta, Gamma and Normal Random Variables , 1976 .

[13]  P. G. Moore,et al.  The Consideration of Risk in Project Selection , 1968 .

[14]  F. Hillier The evaluation of risky interrelated investments , 1966 .

[15]  H. Thomas,et al.  Subjective Probability and its Measurement , 1973 .

[16]  J. K. Ord,et al.  The Discrete Student's $t$ Distribution , 1968 .

[17]  R. Savage Probability inequalities of the Tchebycheff type , 1961 .

[18]  John C. Hull Dealing with Dependence in Risk Simulations , 1977 .

[19]  N L JOHNSON,et al.  Bivariate distributions based on simple translation systems. , 1949, Biometrika.

[20]  Marcel K. Richter,et al.  Cardinal Utility, Portfolio Selection and Taxation , 1960 .

[21]  N. L. Johnson,et al.  Table of percentage points of Pearson curves, for given √β1 and β2, expressed in standard measure , 1963 .

[22]  Karl Pearson,et al.  THE FIFTEEN CONSTANT BIVARIATE FREQUENCY SURFACE , 1925 .

[23]  LeRoy T. Boyer,et al.  PROBABLISTIC APPROACH TO ESTIMATING AND COST CONTROL , 1974 .

[24]  B. Wagle,et al.  A Statistical Analysis of Risk in Capital Investment Projects , 1967 .

[25]  Stuart Jay Deutsch,et al.  A Versatile Four Parameter Family of Probability Distributions Suitable for Simulation , 1977 .

[26]  M. Fréchet Sur les tableaux de correlation dont les marges sont donnees , 1951 .