Application and Theory of Petri Nets and Concurrency

In this lecture we first introduce supervisory control theory for discrete-event systems (DES) in a framework of finite automata and regular languages, with emphasis on the criteria of nonblocking and maximal permissiveness. Also stressed is the importance of control modularity and transparency. Turning to Petri Nets (PN), we indicate how the counterpart control design problem can be posed and (in many but not all cases) solved using integer linear programming. Finally we discuss the feasibility of a “DES transform” approach by which the PN problem is first converted to a DES problem, and the DES solution converted back to a PN implementation. Here we point out several interesting issues for further research.

[1]  Wolfgang Reisig Simple Composition of Nets , 2009, Petri Nets.

[2]  Ina Koch,et al.  Petri Nets – A Mathematical Formalism to Analyze Chemical Reaction Networks , 2010, Molecular informatics.

[3]  Jan J. M. M. Rutten,et al.  A tutorial on coinductive stream calculus and signal flow graphs , 2005, Theor. Comput. Sci..

[4]  Andrew Kennedy,et al.  Relational parametricity and units of measure , 1997, POPL '97.

[5]  Antoni W. Mazurkiewicz,et al.  Compositional Semantics of Pure Place/ Transition Systems , 1988, European Workshop on Applications and Theory of Petri Nets.

[6]  Bengt Jonsson,et al.  Inferring Canonical Register Automata , 2012, VMCAI.

[7]  José Meseguer,et al.  A Partial Order Event Model for Concurrent Objects , 1999, CONCUR.

[8]  Thomas Schwentick,et al.  Two-variable logic on data words , 2011, TOCL.

[9]  C. A. Petri Communication with automata , 1966 .

[10]  Wil M. P. van der Aalst,et al.  Process Mining - Discovery, Conformance and Enhancement of Business Processes , 2011 .

[11]  Martin Leucker,et al.  Learning Minimal Deterministic Automata from Inexperienced Teachers , 2012, ISoLA.

[12]  Pawel Sobocinski,et al.  Penrose: Putting Compositionality to Work for Petri Net Reachability , 2013, CALCO.

[13]  Martin Leucker,et al.  Inferring Network Invariants Automatically , 2006, IJCAR.

[14]  Benedikt Bollig,et al.  A Fresh Approach to Learning Register Automata , 2013, Developments in Language Theory.

[15]  Ekkart Kindler,et al.  A Compositional Partial Order Semantics for Petri Net Components , 1997, ICATPN.

[16]  Mathias Weske,et al.  Propagating changes between aligned process models , 2012, J. Syst. Softw..

[17]  Dana Angluin,et al.  Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..

[18]  Nicoletta Sabadini,et al.  Span(Graph): A Categorial Algebra of Transition Systems , 1997, AMAST.

[19]  Pawel Sobocinski,et al.  Representations of Petri Net Interactions , 2010, CONCUR.

[20]  Julian Rathke,et al.  Decomposing Petri nets , 2013, ArXiv.

[21]  Nissim Francez,et al.  Finite-Memory Automata , 1994, Theor. Comput. Sci..

[22]  Pawel Sobocinski,et al.  Reachability via Compositionality in Petri nets , 2013, ArXiv.

[23]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .

[24]  Bengt Jonsson,et al.  Learning of Automata Models Extended with Data , 2011, SFM.

[25]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[26]  Karsten Wolf How to calculate symmetries of Petri nets , 2000, Acta Informatica.

[27]  Wil M. P. van der Aalst,et al.  Workflow mining: discovering process models from event logs , 2004, IEEE Transactions on Knowledge and Data Engineering.

[28]  Javier Esparza,et al.  Learning Workflow Petri Nets , 2010, Fundam. Informaticae.

[29]  Kenneth L. McMillan,et al.  A technique of state space search based on unfolding , 1995, Formal Methods Syst. Des..

[30]  Wil M. P. van der Aalst,et al.  DecSerFlow: Towards a Truly Declarative Service Flow Language , 2006, WS-FM.

[31]  Thomas Schwentick,et al.  On Notions of Regularity for Data Languages , 2007, FCT.

[32]  Mathias Weske,et al.  Process compliance analysis based on behavioural profiles , 2011, Inf. Syst..