Application of Self Controlling Software Approach to Reactive Tabu Search

In this paper the principle of self adaptation is applied to achieve a self controlling software. The software considered in this case is a heuristic search algorithm: the reactive tabu search. In reactive search algorithms, the behavior of the algorithm is evaluated and modified during the search. To improve self adaptation, two new strategies for reactive tabu search are introduced. The first strategy uses a control theoretic approach, treats the algorithm as a plant to be controlled and modifies the algorithm parameters to control the intensification of the search. The second strategy adjusts several parameters according to the feedback coming from the search to achieve diversification during the search. These strategies adjust the parameters of the tabu search and form the self controlling tabu search (SC-Tabu) algorithm. The performance of the algorithm is tested on different problem types of the quadratic assignment problem (QAP). The results show that the algorithm adapts successfully to achieve good performance on problems with different structures.

[1]  É. Taillard COMPARISON OF ITERATIVE SEARCHES FOR THE QUADRATIC ASSIGNMENT PROBLEM. , 1995 .

[2]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.

[3]  Xiaoyun Zhu,et al.  Utilization and SLO-Based Control for Dynamic Sizing of Resource Partitions , 2005, DSOM.

[4]  Mieczyslaw M. Kokar,et al.  An architecture for software that adapts to changes in requirements , 2000, J. Syst. Softw..

[5]  Andy Laws,et al.  Model-Based Self-Managing Systems Engineering , 2005, 16th International Workshop on Database and Expert Systems Applications (DEXA'05).

[6]  Steve Y. Chiu,et al.  Fine-tuning a tabu search algorithm with statistical tests , 1998 .

[7]  Xiaoyun Zhu,et al.  Utility-driven workload management using nested control design , 2006, 2006 American Control Conference.

[8]  S. Beer The Brain of the Firm , 1972 .

[9]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[10]  Charles Edward Herring,et al.  Viable Software: the Intelligent Control Paradigm for Adaptable and Adaptive Architecture , 2002 .

[11]  Yixin Diao,et al.  Managing Web server performance with AutoTune agents , 2003 .

[12]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[13]  Robert Laddaga,et al.  Active Software , 2000, IWSAS.

[14]  Hua Wang,et al.  Toward Runtime Self-adaptation Method in Software-Intensive Systems Based on Hidden Markov Model , 2007, 31st Annual International Computer Software and Applications Conference (COMPSAC 2007).

[15]  Peter Checkland,et al.  Systems Thinking, Systems Practice , 1981 .

[16]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[17]  Éric D. Taillard,et al.  Robust taboo search for the quadratic assignment problem , 1991, Parallel Comput..

[18]  R. Laddaga Creating robust software through self-adaptation , 1999, IEEE Intelligent Systems and their Applications.

[19]  Yixin Diao,et al.  Feedback Control of Computing Systems , 2004 .

[20]  Mieczyslaw M. Kokar,et al.  Control theory-based foundations of self-controlling software , 1999, IEEE Intell. Syst..

[21]  Holger H. Hoos,et al.  An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.

[22]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[23]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[24]  Robert Laddaga,et al.  The GRAVA self-adaptive architecture: history; design; applications; and challenges , 2004, 24th International Conference on Distributed Computing Systems Workshops, 2004. Proceedings..

[25]  Fred Glover,et al.  Artificial intelligence, heuristic frameworks and tabu search , 1990 .

[26]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[27]  Colin Runciman,et al.  Perfect hash functions made parallel-Lazy functional programming on a distributed multiprocessor , 1993, [1993] Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences.

[28]  Kai-Yuan Cai,et al.  An Overview of Software Cybernetics , 2003, STEP.

[29]  Mieczyslaw M. Kokar,et al.  An experiment in using control techniques in software engineering , 1997, Proceedings of 12th IEEE International Symposium on Intelligent Control.

[30]  Jeffrey O. Kephart,et al.  The Vision of Autonomic Computing , 2003, Computer.

[31]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[32]  Clive H. Elphick,et al.  Brain of the Firm , 1981 .

[33]  Alfonsas Misevicius,et al.  A Tabu Search Algorithm for the Quadratic Assignment Problem , 2005, Comput. Optim. Appl..

[34]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[35]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[36]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[37]  Edward P. K. Tsang,et al.  Guided local search and its application to the traveling salesman problem , 1999, Eur. J. Oper. Res..