Automated detection of retinal layer structures on optical coherence tomography images.

Segmentation of retinal layers from OCT images is fundamental to diagnose the progress of retinal diseases. In this study we show that the retinal layers can be automatically and/or interactively located with good accuracy with the aid of local coherence information of the retinal structure. OCT images are processed using the ideas of texture analysis by means of the structure tensor combined with complex diffusion filtering. Experimental results indicate that our proposed novel approach has good performance in speckle noise removal, enhancement and segmentation of the various cellular layers of the retina using the STRATUSOCTTM system.

[1]  Hiroshi Ishikawa,et al.  Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[2]  Harry M. Salinas,et al.  Evaluation of a nonlinear diffusion process for segmentation and quantification of lesions in optical coherence tomography images , 2005, SPIE Medical Imaging.

[3]  G. Cottet,et al.  Image processing through reaction combined with nonlinear diffusion , 1993 .

[4]  Yehoshua Y. Zeevi,et al.  Image enhancement and denoising by complex diffusion processes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[6]  Kim L. Boyer,et al.  Retinal thickness measurements from optical coherence tomography using a Markov boundary model , 2001, IEEE Transactions on Medical Imaging.

[7]  Giovanni Gregori,et al.  A Robust Algorithm for Retinal Thickness Measurements using Optical Coherence Tomography (Stratus OCT) , 2004 .

[8]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Mark Nitzberg,et al.  Nonlinear Image Filtering with Edge and Corner Enhancement , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Joseph M. Schmitt,et al.  Speckle noise reduction for optical coherence tomography , 1998, European Conference on Biomedical Optics.

[11]  D. Cabrera Fernández,et al.  Extracting Subretinal Layers on Stratus OCT Images via a Structure Tensor Approach Combined With a Nonlinear Diffusion Process , 2005 .

[12]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[13]  Dominique Monnet,et al.  Measurement of Retinal Ganglion Cell Layer and Inner Plexiform Layer Thickness with Optical Coherence Tomography , 2003 .

[14]  J. Schmitt,et al.  Phase-domain processing of optical coherence tomography images. , 1999, Journal of biomedical optics.

[15]  J. Schmitt,et al.  Speckle in optical coherence tomography. , 1999, Journal of biomedical optics.

[16]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[17]  Robert W. Knighton,et al.  Active Contour Models for Assessing Lesion Shape and Area in OCT Images of the Retina , 2003 .

[18]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[19]  J. Weickert Foundations and applications of nonlinear anisotropic diffusion filtering , 1996 .

[20]  Delia Cabrera Fernandez,et al.  Delineating fluid-filled region boundaries in optical coherence tomography images of the retina , 2005, IEEE Transactions on Medical Imaging.