A PTAS for a class of binary non-linear programs with low-rank functions

Abstract Binary non-linear programs belong to the class of combinatorial problems which are computationally hard even to approximate. This paper aims to explore some conditions on the problem structure, under which the resulting problem can be well approximated. Particularly, we consider a setting when both objective function and constraint are low-rank functions, which depend only on a few linear combinations of the input variables, and provide polynomial time approximation schemes. Our result generalizes and unifies some existing results in the literature.

[1]  José R. Correa,et al.  Approximating a class of combinatorial problems with rational objective function , 2010, Math. Program..

[2]  Hans Kellerer,et al.  The symmetric quadratic knapsack problem: approximation and scheduling applications , 2012, 4OR.

[3]  Ranjani G. Sundaram,et al.  Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations , 2020, ESA.

[4]  William R. Heller,et al.  On finding Most Optimal Rectangular Package Plans , 1982, DAC 1982.

[5]  J. William Helton,et al.  Semidefinite representation of convex sets , 2007, Math. Program..

[6]  David B. Shmoys,et al.  A PTAS for capacitated sum-of-ratios optimization , 2009, Oper. Res. Lett..

[7]  H. Konno Applications of Bilinear Programming , 1975 .

[8]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[9]  Dongdong Ge,et al.  A Review of Piecewise Linearization Methods , 2013 .

[10]  Andreas S. Schulz,et al.  A General Framework for Designing Approximation Schemes for Combinatorial Optimization Problems with Many Objectives Combined into One , 2013, Oper. Res..

[11]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[12]  Khaled M. Elbassioni,et al.  Approximation algorithms for binary packing problems with quadratic constraints of low cp-rank decompositions , 2017, Discret. Appl. Math..

[13]  Martin Skutella,et al.  Packing under convex quadratic constraints , 2019, Mathematical Programming.

[14]  Hadas Shachnai,et al.  There is no EPTAS for two-dimensional knapsack , 2010, Inf. Process. Lett..

[15]  Khaled M. Elbassioni,et al.  Approximation schemes for r-weighted Minimization Knapsack problems , 2018, Ann. Oper. Res..

[16]  Hans Kellerer,et al.  Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knapsack Problem and its Scheduling Applications , 2010, Algorithmica.

[17]  Mihalis Yannakakis,et al.  On the approximability of trade-offs and optimal access of Web sources , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[18]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[19]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[20]  R. Ravi,et al.  An FPTAS for minimizing a class of low-rank quasi-concave functions over a convex set , 2013, Oper. Res. Lett..

[21]  Siegfried Schaible,et al.  Fractional programming: The sum-of-ratios case , 2003, Optim. Methods Softw..

[22]  Evdokia Nikolova,et al.  On the Hardness and Smoothed Complexity of Quasi-Concave Minimization , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[23]  Gerhard J. Woeginger,et al.  When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)? , 2000, INFORMS J. Comput..

[24]  Andreas S. Schulz,et al.  An FPTAS for optimizing a class of low-rank functions over a polytope , 2013, Math. Program..

[25]  Khaled M. Elbassioni,et al.  Truthful Mechanisms for Combinatorial Allocation of Electric Power in Alternating Current Electric Systems for Smart Grid , 2016, ACM Trans. Economics and Comput..

[26]  B. Awerbuch,et al.  Load Balancing in the Lp Norm , 1995, FOCS 1995.

[27]  Yin Tat Lee,et al.  Efficient Inverse Maintenance and Faster Algorithms for Linear Programming , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[28]  Gerhard J. Woeginger,et al.  The quadratic 0-1 knapsack problem with series-parallel support , 2002, Oper. Res. Lett..

[29]  A. Frieze,et al.  Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .

[30]  Khaled M. Elbassioni,et al.  Approximation Schemes for Multi-objective Optimization with Quadratic Constraints of Fixed CP-Rank , 2015, ADT.

[31]  E. Eisenberg Aggregation of Utility Functions , 1961 .

[32]  Alper Atamtürk,et al.  Polymatroids and mean-risk minimization in discrete optimization , 2008, Oper. Res. Lett..