Atomic Layer Deposition of Ta2O5/Polyimide Nanolaminates†

Ta2O5/polyimide nanolaminates are deposited at 170 °C by atomic layer deposition (ALD). The precursors are tantalum ethoxide and water for Ta2O5, and pyromellitic dianhydride (PMDA) and diaminohexane (DAH) for polyimide. The nanolaminates are characterized by X-ray reflection (XRR), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), capacitance and current-voltage measurements, and nanoindentation. The layered structure is confirmed by the XRR data and FESEM images. By controlling the relative thicknesses of the Ta2O5 and polyimide layers, the dielectric and mechanical properties of the nanolaminates are tailored over wide ranges. Dielectric properties of the nanolaminates are improved compared to bare Ta2O5 and polyimide films. Elasticity of the nanolaminate films increases with the polyimide content.

[1]  Mikko Ritala,et al.  Atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC{sub 2}H{sub 5}){sub 5} and H{sub 2}O , 1995 .

[2]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[3]  O. Nilsen,et al.  Deposition of Organic- Inorganic Hybrid Materials by Atomic Layer Deposition , 2008, ECS Transactions.

[4]  G. Maier Low dielectric constant polymers for microelectronics , 2001 .

[5]  G. Parsons,et al.  “Zincone” Zinc Oxide−Organic Hybrid Polymer Thin Films Formed by Molecular Layer Deposition , 2009 .

[6]  Hui Shao,et al.  Layer-by-layer polycondensation of nylon 66 by alternating vapour deposition polymerization , 1997 .

[7]  M. Ritala,et al.  Introducing atomic layer epitaxy for the deposition of optical thin films , 1996 .

[8]  Mikko Ritala,et al.  Atomic layer deposition of Al2O3, ZrO2, Ta2O5, and Nb2O5 based nanolayered dielectrics , 2002 .

[9]  T. Sajavaara,et al.  Atomic layer deposition of polyimide thin films , 2007 .

[10]  M. Gerken,et al.  Hybrid organic-dielectric thin film stacks for nonlinear optical applications , 2008 .

[11]  A. Ulman,et al.  Formation of multilayers by self-assembly , 1989 .

[12]  D. Cahill,et al.  Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates , 2004, Science.

[13]  Paul E. Burrows,et al.  Mechanisms of Vapor Permeation Through Multilayer Barrier Films: Lag Time Versus Equilibrium Permeation , 2004 .

[14]  S. George,et al.  X-ray mirrors on flexible polymer substrates fabricated by atomic layer deposition , 2007 .

[15]  Mikko Ritala,et al.  Tailoring the dielectric properties of HfO2–Ta2O5 nanolaminates , 1996 .

[16]  S. George,et al.  Molecular Layer Deposition of Alucone Polymer Films Using Trimethylaluminum and Ethylene Glycol , 2008 .

[17]  M. Weaver,et al.  Thin-film permeation-barrier technology for flexible organic light-emitting devices , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Wataru Sotoyama,et al.  Polymer films formed with monolayer growth steps by molecular layer deposition , 1991 .

[19]  Andrew Nelson,et al.  Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT , 2006 .

[20]  Z. Suo,et al.  Channel cracks in a hermetic coating consisting of organic and inorganic layers , 2007 .

[21]  T. Mallouk,et al.  Inorganic analogues of Langmuir-Blodgett films: adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces , 1988 .

[22]  Bharat Bhushan,et al.  NANOINDENTATION HARDNESS MEASUREMENTS USING ATOMIC FORCE MICROSCOPY , 1994 .

[23]  D. Carlson,et al.  Irreversible light‐enhanced degradation in amorphous silicon solar cells at elevated temperatures , 1996 .

[24]  K. G. Sharp Inorganic/Organic Hybrid Materials , 1998 .