Design and modeling of InAs/GaSb type II superlattice based dual-band infrared detectors

The objective of this paper is to provide a credible analysis for predicting the spectral responsivity of InAs/GaSb/AlSb type-II superlattice (T2SL) based dual-band infrared photodetectors. An overview of the T2SL based design criteria is given and new dual-band detector architecture with a model dual-band detector structure designed to detect light in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) ranges is presented. The absorption coefficient is modeled empirically and the quantum efficiency spectra are calculated using a numerical model and Hovel’s analytical expressions. The spectral cross-talk due to the response of the LWIR channel to residual MWIR light is also investigated. It is shown that the significance of this cross-talk primarily depends on the temperature of the target (scene) being detected. For MWIR/MWIR (two bands in the MWIR range) dual-band detectors, the spectral cross-talk becomes significant irrespective of the target temperature. Eliminating the spectral cross-talk in ...

[1]  R. DeWames,et al.  Minority carrier lifetime characteristics in type II InAs/GaSb LWIR superlattice n+πp+ photodiodes , 2009, Defense + Commercial Sensing.

[2]  Sumith V. Bandara,et al.  Doping dependence of minority carrier lifetime in long-wave Sb-based type II superlattice infrared detector materials , 2011 .

[3]  Frank Rutz,et al.  Dual-Color InAs/GaSb Superlattice Focal-Plane Array Technology , 2011 .

[4]  Leo Esaki,et al.  In1−xGaxAs‐GaSb1−yAsy heterojunctions by molecular beam epitaxy , 1977 .

[5]  B. Laikhtman,et al.  In-plane and growth direction electron cyclotron effective mass in short period InAs/GaSb semiconductor superlattices , 2011 .

[6]  Filip Neele,et al.  Two-color infrared missile warning sensors , 2005, SPIE Defense + Commercial Sensing.

[7]  John F. Klem,et al.  Comparison of nBn and nBp mid-wave barrier infrared photodetectors , 2010, OPTO.

[8]  H. S. Kim,et al.  nBn structure based on InAs /GaSb type-II strained layer superlattices , 2007 .

[9]  Yajun Wei,et al.  Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering , 2004 .

[10]  George Theodorou,et al.  Theory of electronic and optical properties of bulk AlSb and InAs and InAs/AlSb superlattices , 2000 .

[11]  Meimei Z. Tidrow,et al.  High quantum efficiency two color type-II InAs∕GaSb n-i-p-p-i-n photodiodes , 2008 .

[12]  M. L. Tilton,et al.  Comparing pseudopotential predictions for InAs/GaSb superlattices , 2002 .

[13]  Piotr Martyniuk,et al.  InAs/GaInSb superlattices as a promising material system for third generation infrared detectors , 2006 .

[14]  Sumith V. Bandara,et al.  Update on III-V antimonide-based superlattice FPA development and material characterization , 2011, Defense + Commercial Sensing.

[15]  D. Ting,et al.  A high-performance long wavelength superlattice complementary barrier infrared detector , 2009 .

[16]  Antoni Rogalski,et al.  Intrinsic infrared detectors , 1988 .

[17]  Jerry R. Meyer,et al.  MULTIBAND COUPLING AND ELECTRONIC STRUCTURE OF (INAS)N/(GASB)N SUPERLATTICES , 1999 .

[18]  Martin Walther,et al.  Passivation of InAs∕(GaIn)Sb short-period superlattice photodiodes with 10μm cutoff wavelength by epitaxial overgrowth with AlxGa1−xAsySb1−y , 2005 .

[19]  Jeffrey H. Warner,et al.  Dual band LWIR/VLWIR type-II superlattice photodiodes , 2005, SPIE Defense + Commercial Sensing.

[20]  J. Phillips,et al.  Optical absorption properties of HgCdTe epilayers with uniform composition , 2003 .

[21]  A. G. U. Perera,et al.  Wavelength agile superlattice quantum dot infrared photodetector , 2009 .

[22]  Manijeh Razeghi,et al.  Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes , 2009 .

[23]  Jerry R. Meyer,et al.  Analysis and performance of type-II superlattice infrared detectors , 2011 .

[24]  Yajun Wei,et al.  Very high quantum efficiency in type-II InAs/GaSb superlattice photodiode with cutoff of 12 μm , 2007 .

[25]  Ron Kaspi,et al.  Absorbance spectroscopy and identification of valence subband transitions in type-II InAs/GaSb superlattices , 2000 .

[26]  P. S. Dutta,et al.  Below bandgap optical absorption in tellurium-doped GaSb , 2005 .

[27]  Alexander Soibel,et al.  Superlattice barrier infrared detector development at the Jet Propulsion Laboratory , 2011, Defense + Commercial Sensing.

[28]  David R. Rhiger,et al.  Performance Comparison of Long-Wavelength Infrared Type II Superlattice Devices with HgCdTe , 2011 .

[29]  C. Bethea,et al.  Broadband 8–12 μm high‐sensitivity GaAs quantum well infrared photodetector , 1989 .

[30]  Christian Mailhiot,et al.  Long‐wavelength infrared detectors based on strained InAs–Ga1−xInxSb type‐II superlattices , 1989 .

[31]  Gail J. Brown Type-II InAs/GaInSb superlattices for infrared detection: an overview , 2005, SPIE Defense + Commercial Sensing.

[32]  Frank Fuchs,et al.  Magneto-optics of InAs/Ga1−xInxSb infrared superlattice diodes , 1998 .

[33]  Antoni Rogalski,et al.  Third-generation infrared photon detectors , 2003 .

[34]  Alexander Soibel,et al.  Low dark current long-wave infrared InAs/GaSb superlattice detectors , 2010 .

[35]  Heather J. Haugan,et al.  Calculation of Vertical and Horizontal Mobilities in InAs/GaSb Superlattices (Postprint) , 2011 .

[36]  Jun Li,et al.  Voltage-tunable four-color quantum-well infrared photodetectors , 2005 .

[37]  Leo Esaki,et al.  Electronic properties of InAsGaSb superlattices , 1980 .

[38]  F. C. Case,et al.  Independently accessed back-to-back HgCdTe photodiodes: A new dual-band infrared detector , 1995 .

[39]  David Z. Ting,et al.  Description of bulk inversion asymmetry in the effective-bond-orbital model , 2003 .

[40]  Andrew J. Williamson,et al.  InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures , 1999 .

[41]  H. Ehrenreich,et al.  Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes , 1995 .

[42]  Arezou Khoshakhlagh,et al.  Bias dependent dual band response from InAs∕Ga(In)Sb type II strain layer superlattice detectors , 2007 .

[43]  Jamie D. Phillips,et al.  Detailed study of above bandgap optical absorption in HgCdTe , 2005 .

[44]  G. Wicks,et al.  nBn detector, an infrared detector with reduced dark current and higher operating temperature , 2006 .

[45]  Gregory Belenky,et al.  Minority carrier lifetime in type-2 InAs–GaSb strained-layer superlattices and bulk HgCdTe materials , 2010 .

[46]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[47]  Xavier Marcadet,et al.  Spectral cross-talk in dual-band quantum well infrared detectors , 2006 .

[48]  S Krishna,et al.  Bias Switchable Dual-Band InAs/GaSb Superlattice Detector With pBp Architecture , 2011, IEEE Photonics Journal.

[49]  Manijeh Razeghi,et al.  Dark current suppression in type II InAs∕GaSb superlattice long wavelength infrared photodiodes with M-structure barrier , 2007 .

[50]  Gail J. Brown,et al.  Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation , 2004 .

[51]  Matt Grupen,et al.  An alternative treatment of heat flow for charge transport in semiconductor devices , 2009 .

[52]  Krishnamurthy Mahalingam,et al.  Growth of short-period InAs∕GaSb superlattices , 2006 .