Design and modeling of InAs/GaSb type II superlattice based dual-band infrared detectors
暂无分享,去创建一个
Michael T. Eismann | Thomas R. Nelson | Gamini Ariyawansa | Joshua M. Duran | John E. Scheihing | Matt Grupen | M. Grupen | M. Eismann | J. Duran | G. Ariyawansa | T. Nelson | J. Scheihing
[1] R. DeWames,et al. Minority carrier lifetime characteristics in type II InAs/GaSb LWIR superlattice n+πp+ photodiodes , 2009, Defense + Commercial Sensing.
[2] Sumith V. Bandara,et al. Doping dependence of minority carrier lifetime in long-wave Sb-based type II superlattice infrared detector materials , 2011 .
[3] Frank Rutz,et al. Dual-Color InAs/GaSb Superlattice Focal-Plane Array Technology , 2011 .
[4] Leo Esaki,et al. In1−xGaxAs‐GaSb1−yAsy heterojunctions by molecular beam epitaxy , 1977 .
[5] B. Laikhtman,et al. In-plane and growth direction electron cyclotron effective mass in short period InAs/GaSb semiconductor superlattices , 2011 .
[6] Filip Neele,et al. Two-color infrared missile warning sensors , 2005, SPIE Defense + Commercial Sensing.
[7] John F. Klem,et al. Comparison of nBn and nBp mid-wave barrier infrared photodetectors , 2010, OPTO.
[8] H. S. Kim,et al. nBn structure based on InAs /GaSb type-II strained layer superlattices , 2007 .
[9] Yajun Wei,et al. Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering , 2004 .
[10] George Theodorou,et al. Theory of electronic and optical properties of bulk AlSb and InAs and InAs/AlSb superlattices , 2000 .
[11] Meimei Z. Tidrow,et al. High quantum efficiency two color type-II InAs∕GaSb n-i-p-p-i-n photodiodes , 2008 .
[12] M. L. Tilton,et al. Comparing pseudopotential predictions for InAs/GaSb superlattices , 2002 .
[13] Piotr Martyniuk,et al. InAs/GaInSb superlattices as a promising material system for third generation infrared detectors , 2006 .
[14] Sumith V. Bandara,et al. Update on III-V antimonide-based superlattice FPA development and material characterization , 2011, Defense + Commercial Sensing.
[15] D. Ting,et al. A high-performance long wavelength superlattice complementary barrier infrared detector , 2009 .
[16] Antoni Rogalski,et al. Intrinsic infrared detectors , 1988 .
[17] Jerry R. Meyer,et al. MULTIBAND COUPLING AND ELECTRONIC STRUCTURE OF (INAS)N/(GASB)N SUPERLATTICES , 1999 .
[18] Martin Walther,et al. Passivation of InAs∕(GaIn)Sb short-period superlattice photodiodes with 10μm cutoff wavelength by epitaxial overgrowth with AlxGa1−xAsySb1−y , 2005 .
[19] Jeffrey H. Warner,et al. Dual band LWIR/VLWIR type-II superlattice photodiodes , 2005, SPIE Defense + Commercial Sensing.
[20] J. Phillips,et al. Optical absorption properties of HgCdTe epilayers with uniform composition , 2003 .
[21] A. G. U. Perera,et al. Wavelength agile superlattice quantum dot infrared photodetector , 2009 .
[22] Manijeh Razeghi,et al. Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes , 2009 .
[23] Jerry R. Meyer,et al. Analysis and performance of type-II superlattice infrared detectors , 2011 .
[24] Yajun Wei,et al. Very high quantum efficiency in type-II InAs/GaSb superlattice photodiode with cutoff of 12 μm , 2007 .
[25] Ron Kaspi,et al. Absorbance spectroscopy and identification of valence subband transitions in type-II InAs/GaSb superlattices , 2000 .
[26] P. S. Dutta,et al. Below bandgap optical absorption in tellurium-doped GaSb , 2005 .
[27] Alexander Soibel,et al. Superlattice barrier infrared detector development at the Jet Propulsion Laboratory , 2011, Defense + Commercial Sensing.
[28] David R. Rhiger,et al. Performance Comparison of Long-Wavelength Infrared Type II Superlattice Devices with HgCdTe , 2011 .
[29] C. Bethea,et al. Broadband 8–12 μm high‐sensitivity GaAs quantum well infrared photodetector , 1989 .
[30] Christian Mailhiot,et al. Long‐wavelength infrared detectors based on strained InAs–Ga1−xInxSb type‐II superlattices , 1989 .
[31] Gail J. Brown. Type-II InAs/GaInSb superlattices for infrared detection: an overview , 2005, SPIE Defense + Commercial Sensing.
[32] Frank Fuchs,et al. Magneto-optics of InAs/Ga1−xInxSb infrared superlattice diodes , 1998 .
[33] Antoni Rogalski,et al. Third-generation infrared photon detectors , 2003 .
[34] Alexander Soibel,et al. Low dark current long-wave infrared InAs/GaSb superlattice detectors , 2010 .
[35] Heather J. Haugan,et al. Calculation of Vertical and Horizontal Mobilities in InAs/GaSb Superlattices (Postprint) , 2011 .
[36] Jun Li,et al. Voltage-tunable four-color quantum-well infrared photodetectors , 2005 .
[37] Leo Esaki,et al. Electronic properties of InAsGaSb superlattices , 1980 .
[38] F. C. Case,et al. Independently accessed back-to-back HgCdTe photodiodes: A new dual-band infrared detector , 1995 .
[39] David Z. Ting,et al. Description of bulk inversion asymmetry in the effective-bond-orbital model , 2003 .
[40] Andrew J. Williamson,et al. InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures , 1999 .
[41] H. Ehrenreich,et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes , 1995 .
[42] Arezou Khoshakhlagh,et al. Bias dependent dual band response from InAs∕Ga(In)Sb type II strain layer superlattice detectors , 2007 .
[43] Jamie D. Phillips,et al. Detailed study of above bandgap optical absorption in HgCdTe , 2005 .
[44] G. Wicks,et al. nBn detector, an infrared detector with reduced dark current and higher operating temperature , 2006 .
[45] Gregory Belenky,et al. Minority carrier lifetime in type-2 InAs–GaSb strained-layer superlattices and bulk HgCdTe materials , 2010 .
[46] F. Urbach. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .
[47] Xavier Marcadet,et al. Spectral cross-talk in dual-band quantum well infrared detectors , 2006 .
[48] S Krishna,et al. Bias Switchable Dual-Band InAs/GaSb Superlattice Detector With pBp Architecture , 2011, IEEE Photonics Journal.
[49] Manijeh Razeghi,et al. Dark current suppression in type II InAs∕GaSb superlattice long wavelength infrared photodiodes with M-structure barrier , 2007 .
[50] Gail J. Brown,et al. Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation , 2004 .
[51] Matt Grupen,et al. An alternative treatment of heat flow for charge transport in semiconductor devices , 2009 .
[52] Krishnamurthy Mahalingam,et al. Growth of short-period InAs∕GaSb superlattices , 2006 .