C-RNNCrispr: Prediction of CRISPR/Cas9 sgRNA activity using convolutional and recurrent neural networks

Graphical abstract

[1]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[2]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[3]  Hermann Ney,et al.  LSTM Neural Networks for Language Modeling , 2012, INTERSPEECH.

[4]  Lixin Zheng,et al.  Combining Convolutional Neural Network With Recursive Neural Network for Blood Cell Image Classification , 2018, IEEE Access.

[5]  Hidemasa Bono,et al.  CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites , 2014, Bioinform..

[6]  Ruochi Zhang,et al.  Exploiting sequence-based features for predicting enhancer–promoter interactions , 2017, Bioinform..

[7]  M. Huss,et al.  A primer on deep learning in genomics , 2018, Nature Genetics.

[8]  Ronald M. Summers,et al.  Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning , 2016, IEEE Transactions on Medical Imaging.

[9]  Ka-man Chun Off-target predictions in CRISPR-Cas9 gene editing using deep learning , 2018 .

[10]  Zhen Xie,et al.  Improved sgRNA design in bacteria via genome-wide activity profiling , 2018, bioRxiv.

[11]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[12]  Denis C. Bauer,et al.  The Current State and Future of CRISPR-Cas9 gRNA Design Tools , 2018, Front. Pharmacol..

[13]  Hazem M. Hajj,et al.  A hybrid approach with collaborative filtering for recommender systems , 2013, 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC).

[14]  M. Mukaka,et al.  Statistics corner: A guide to appropriate use of correlation coefficient in medical research. , 2012, Malawi medical journal : the journal of Medical Association of Malawi.

[15]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[16]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[17]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[18]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[19]  Chris Eliasmith,et al.  Hyperopt: a Python library for model selection and hyperparameter optimization , 2015 .

[20]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[21]  Xiaohui S. Xie,et al.  DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences , 2015, bioRxiv.

[22]  May D. Wang,et al.  DeeperBind: Enhancing Prediction of Sequence Specificities of DNA Binding Proteins , 2016, bioRxiv.

[23]  Le Song,et al.  Poly(A) motif prediction using spectral latent features from human DNA sequences , 2013, Bioinform..

[24]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[25]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[26]  Cewu Lu,et al.  Relative CNN-RNN: Learning Relative Atmospheric Visibility From Images , 2019, IEEE Transactions on Image Processing.

[27]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[28]  Tao Zhang,et al.  Computational approaches for effective CRISPR guide RNA design and evaluation , 2019, Computational and structural biotechnology journal.

[29]  Vladlen Koltun,et al.  An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling , 2018, ArXiv.

[30]  Ryan T. Leenay,et al.  Large dataset enables prediction of repair after CRISPR–Cas9 editing in primary T cells , 2019, Nature Biotechnology.

[31]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[32]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[33]  Jennifer Listgarten,et al.  Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs , 2018, Nature Biomedical Engineering.

[34]  Xiangtao Li,et al.  Synergizing CRISPR/Cas9 off-target predictions for ensemble insights and practical applications , 2018, Bioinform..

[35]  Guohui Chuai,et al.  DeepCRISPR: optimized CRISPR guide RNA design by deep learning , 2018, Genome Biology.

[36]  Bolei Zhou,et al.  Learning Deep Features for Scene Recognition using Places Database , 2014, NIPS.

[37]  Wei Pan,et al.  A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data , 2019, Bioinform..

[38]  Lawrence D. Jackel,et al.  Handwritten Digit Recognition with a Back-Propagation Network , 1989, NIPS.

[39]  Jing Yang,et al.  Benchmarking CRISPR on‐target sgRNA design , 2018, Briefings Bioinform..

[40]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[41]  Junchi Yan,et al.  Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks , 2017, BMC Genomics.

[42]  M. Boutros,et al.  E-CRISP: fast CRISPR target site identification , 2014, Nature Methods.

[43]  John J. Wyrick,et al.  Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro. , 2015, Biochemistry.

[44]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[45]  Jugal K. Kalita,et al.  Deep Learning applied to NLP , 2017, ArXiv.

[46]  B. Póczos,et al.  Predicting Enhancer-Promoter Interaction from Genomic Sequence with Deep Neural Networks , 2016, bioRxiv.

[47]  Jialiang Yang,et al.  Identify Key Sequence Features to Improve CRISPR sgRNA Efficacy , 2017, IEEE Access.

[48]  Md. Khaledur Rahman,et al.  CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems , 2017, PloS one.

[49]  Hong-Bin Shen,et al.  Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks , 2017 .

[50]  Mohamed Chaabane,et al.  Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities , 2019, Bioinform..

[51]  D. Durocher,et al.  High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities , 2015, Cell.

[52]  Sungroh Yoon,et al.  Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity , 2018, Nature Biotechnology.

[53]  Charles E. Vejnar,et al.  CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo , 2015, Nature Methods.

[54]  Wei Chen,et al.  Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network , 2018, J. Chem. Inf. Model..

[55]  Xiuqing Zhang,et al.  An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools , 2019, RNA biology.

[56]  Andrés Montoyo,et al.  Advances on natural language processing , 2007, Data Knowl. Eng..

[57]  Jong-il Kim,et al.  Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells , 2015, Nature Methods.

[58]  Leonidas J. Guibas,et al.  Taskonomy: Disentangling Task Transfer Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[59]  Itay Mayrose,et al.  A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action , 2017, PLoS Comput. Biol..

[60]  G. Church,et al.  Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach , 2015, Nature Methods.