On generalized multiplicative cascades

We consider a generalized Mandelbrot's martingale {Yn} and the associated Mandelbrot's measure [mu][omega] on marked trees. If the limit variable Z=lim Yn is not degenerate, we study the asymptotic behavior at infinity of its distribution; in the contrary case, we prove that there is an associated natural martingale Yn* converging to a non-negative random variable Z* with infinite mean. Both Z and Z* lead to non-trivial solution of a distributional equation which extends the notion of stable laws. Precise results are obtained about Hausdorff measures and packing measures of the support of the Mandelbrot's measure.

[1]  E. Seneta,et al.  Functional equations and the Galton-Watson process , 1969, Advances in Applied Probability.

[2]  A. K. Grincevicjus On the Continuity of the Distribution of a Sum of Dependent Variables Connected with Independent Walks on Lines , 1974 .

[3]  Quansheng Liu Fixed points of a generalized smoothing transformation and applications to the branching random walk , 1998, Advances in Applied Probability.

[4]  U. Rösler A fixed point theorem for distributions , 1992 .

[5]  H. Kesten,et al.  A Limit Theorem for Multidimensional Galton-Watson Processes , 1966 .

[6]  Quansheng Liu The Growth of an Entire Characteristic Fonction and the Tail Probabilities of the Limit of a Tree Martingale , 1996 .

[7]  Quansheng Liu,et al.  Asymptotic properties and absolute continuity of laws stable by random weighted mean , 2001 .

[8]  J. Peyrière,et al.  Calculs de dimensions de Hausdorff , 1977 .

[9]  A. Rouault,et al.  Boltzmann-Gibbs weights in the branching random walk , 1997 .

[10]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[11]  N. Bingham,et al.  Asymptotic properties of super-critical branching processes II: Crump-Mode and Jirina processes , 1975, Advances in Applied Probability.

[12]  Chaos multiplicatif: un traitement simple et complet de la fonction de partition , 1995 .

[13]  Quansheng Liu Fixed Points of a Generalized Smoothing Transformation and Applications to Branching Processes , 1995 .

[14]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[15]  A. Grincevičius,et al.  One limit distribution for a random walk on the line , 1975 .

[16]  On a functional equation for general branching processes , 1973 .

[17]  N. Bingham,et al.  Asymptotic properties of supercritical branching processes I: The Galton-Watson process , 1974, Advances in Applied Probability.

[18]  K. Athreya A note on a functional equation arising in Galton-Watson branching processes , 1971, Journal of Applied Probability.

[19]  E. Seneta On Recent Theorems Concerning the Supercritical Galton-Watson Process , 1968 .

[20]  Russell Lyons,et al.  A Simple Path to Biggins’ Martingale Convergence for Branching Random Walk , 1998, math/9803100.

[21]  Pierre Collet,et al.  Large deviations for multiplicative chaos , 1992 .

[22]  Andreas E. Kyprianou,et al.  SENETA-HEYDE NORMING IN THE BRANCHING RANDOM WALK , 1997 .

[23]  J. Biggins,et al.  Martingale convergence in the branching random walk , 1977, Journal of Applied Probability.

[24]  R. Doney,et al.  A limit theorem for a class of supercritical branching processes , 1972, Journal of Applied Probability.

[25]  J. Biggins Uniform Convergence of Martingales in the Branching Random Walk , 1992 .

[26]  S. James Taylor,et al.  Mathematical Proceedings of the Cambridge Philosophical Society The measure theory of random fractals , 2022 .

[27]  Edward C. Waymire,et al.  Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .

[28]  J. Biggins Growth rates in the branching random walk , 1979 .

[29]  K. Falconer Cut-set sums and tree processes , 1987 .

[30]  Quansheng Liu,et al.  On Two Measures Defined on the Boundary of a Branching Tree , 1997 .

[31]  J. Neveu,et al.  Arbres et processus de Galton-Watson , 1986 .

[32]  Quansheng Liu Sur Une Équation Fonctionnelle Et SES Applications: Une Extension Du Théorème De Kesten-Stigum Concernant Des Processus De Branchement , 1997, Advances in Applied Probability.

[33]  R. Durrett,et al.  Fixed points of the smoothing transformation , 1983 .

[34]  G. M. Molchan,et al.  Scaling exponents and multifractal dimensions for independent random cascades , 1996 .

[35]  R. Mauldin,et al.  Random recursive constructions: asymptotic geometric and topological properties , 1986 .

[36]  Yves Guivarc'h,et al.  Sur une extension de la notion de loi semi-stable , 1990 .

[37]  C. Tricot,et al.  Packing measure, and its evaluation for a Brownian path , 1985 .

[38]  Quansheng Liu Sur quelques problemes a propos de processus de branchement, des flots dans les reseaux et des mesures de hausdorff associees , 1993 .

[39]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[40]  Quansheng Liu The exact hausdorff dimension of a branching set , 1996 .

[41]  James Taylor,et al.  Defining fractals in a probability space , 1994 .

[42]  Russell Lyons,et al.  Ergodic theory on Galton—Watson trees: speed of random walk and dimension of harmonic measure , 1995, Ergodic Theory and Dynamical Systems.

[43]  J. Hawkes,et al.  Trees Generated by a Simple Branching Process , 1981 .