On generalized multiplicative cascades
暂无分享,去创建一个
[1] E. Seneta,et al. Functional equations and the Galton-Watson process , 1969, Advances in Applied Probability.
[2] A. K. Grincevicjus. On the Continuity of the Distribution of a Sum of Dependent Variables Connected with Independent Walks on Lines , 1974 .
[3] Quansheng Liu. Fixed points of a generalized smoothing transformation and applications to the branching random walk , 1998, Advances in Applied Probability.
[4] U. Rösler. A fixed point theorem for distributions , 1992 .
[5] H. Kesten,et al. A Limit Theorem for Multidimensional Galton-Watson Processes , 1966 .
[6] Quansheng Liu. The Growth of an Entire Characteristic Fonction and the Tail Probabilities of the Limit of a Tree Martingale , 1996 .
[7] Quansheng Liu,et al. Asymptotic properties and absolute continuity of laws stable by random weighted mean , 2001 .
[8] J. Peyrière,et al. Calculs de dimensions de Hausdorff , 1977 .
[9] A. Rouault,et al. Boltzmann-Gibbs weights in the branching random walk , 1997 .
[10] J. Kahane,et al. Sur certaines martingales de Benoit Mandelbrot , 1976 .
[11] N. Bingham,et al. Asymptotic properties of super-critical branching processes II: Crump-Mode and Jirina processes , 1975, Advances in Applied Probability.
[12] Chaos multiplicatif: un traitement simple et complet de la fonction de partition , 1995 .
[13] Quansheng Liu. Fixed Points of a Generalized Smoothing Transformation and Applications to Branching Processes , 1995 .
[14] H. Kesten. Random difference equations and Renewal theory for products of random matrices , 1973 .
[15] A. Grincevičius,et al. One limit distribution for a random walk on the line , 1975 .
[16] On a functional equation for general branching processes , 1973 .
[17] N. Bingham,et al. Asymptotic properties of supercritical branching processes I: The Galton-Watson process , 1974, Advances in Applied Probability.
[18] K. Athreya. A note on a functional equation arising in Galton-Watson branching processes , 1971, Journal of Applied Probability.
[19] E. Seneta. On Recent Theorems Concerning the Supercritical Galton-Watson Process , 1968 .
[20] Russell Lyons,et al. A Simple Path to Biggins’ Martingale Convergence for Branching Random Walk , 1998, math/9803100.
[21] Pierre Collet,et al. Large deviations for multiplicative chaos , 1992 .
[22] Andreas E. Kyprianou,et al. SENETA-HEYDE NORMING IN THE BRANCHING RANDOM WALK , 1997 .
[23] J. Biggins,et al. Martingale convergence in the branching random walk , 1977, Journal of Applied Probability.
[24] R. Doney,et al. A limit theorem for a class of supercritical branching processes , 1972, Journal of Applied Probability.
[25] J. Biggins. Uniform Convergence of Martingales in the Branching Random Walk , 1992 .
[26] S. James Taylor,et al. Mathematical Proceedings of the Cambridge Philosophical Society The measure theory of random fractals , 2022 .
[27] Edward C. Waymire,et al. Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .
[28] J. Biggins. Growth rates in the branching random walk , 1979 .
[29] K. Falconer. Cut-set sums and tree processes , 1987 .
[30] Quansheng Liu,et al. On Two Measures Defined on the Boundary of a Branching Tree , 1997 .
[31] J. Neveu,et al. Arbres et processus de Galton-Watson , 1986 .
[32] Quansheng Liu. Sur Une Équation Fonctionnelle Et SES Applications: Une Extension Du Théorème De Kesten-Stigum Concernant Des Processus De Branchement , 1997, Advances in Applied Probability.
[33] R. Durrett,et al. Fixed points of the smoothing transformation , 1983 .
[34] G. M. Molchan,et al. Scaling exponents and multifractal dimensions for independent random cascades , 1996 .
[35] R. Mauldin,et al. Random recursive constructions: asymptotic geometric and topological properties , 1986 .
[36] Yves Guivarc'h,et al. Sur une extension de la notion de loi semi-stable , 1990 .
[37] C. Tricot,et al. Packing measure, and its evaluation for a Brownian path , 1985 .
[38] Quansheng Liu. Sur quelques problemes a propos de processus de branchement, des flots dans les reseaux et des mesures de hausdorff associees , 1993 .
[39] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[40] Quansheng Liu. The exact hausdorff dimension of a branching set , 1996 .
[41] James Taylor,et al. Defining fractals in a probability space , 1994 .
[42] Russell Lyons,et al. Ergodic theory on Galton—Watson trees: speed of random walk and dimension of harmonic measure , 1995, Ergodic Theory and Dynamical Systems.
[43] J. Hawkes,et al. Trees Generated by a Simple Branching Process , 1981 .