Radiometric Compensation through Inverse Light Transport

Radiometric compensation techniques allow seamless projections onto complex everyday surfaces. Implemented with projector-camera systems they support the presentation of visual content in situations where projection-optimized screens are not available or not desired - as in museums, historic sites, air-plane cabins, or stage performances. We propose a novel approach that employs the full light transport between projectors and a camera to account for many illumination aspects, such as interreflections, refractions, shadows, and defocus. Precomputing the inverse light transport in combination with an efficient implementation on the GPU makes the real-time compensation of captured local and global light modulations possible.

[1]  Ruigang Yang,et al.  Spatial-Depth Super Resolution for Range Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  David Salesin,et al.  Video matting of complex scenes , 2002, SIGGRAPH.

[3]  W. Brent Seales,et al.  Dynamic shadow removal from front projection displays , 2001, Proceedings Visualization, 2001. VIS '01..

[4]  Michael S. Brown,et al.  Image Pre-Conditioning for Out-of-Focus Projector Blur , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  Gordon Wetzstein,et al.  Radiometric compensation of global illumination effects with projector-camera systems , 2006, SIGGRAPH '06.

[6]  Jiaya Jia,et al.  Poisson matting , 2004, SIGGRAPH 2004.

[7]  Shree K. Nayar,et al.  Making one object look like another: controlling appearance using a projector-camera system , 2004, CVPR 2004.

[8]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[9]  Ramesh Raskar,et al.  Fast separation of direct and global components of a scene using high frequency illumination , 2006, SIGGRAPH 2006.

[10]  Jong-Il Park,et al.  Specularity-Free Projection on Nonplanar Surface , 2005, PCM.

[11]  John M. Hannah,et al.  Alpha channel estimation in high resolution images and image sequences , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[12]  Mark Ashdown,et al.  Robust Content-Dependent Photometric Projector Compensation , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[13]  Oliver Bimber,et al.  Multifocal projection: a multiprojector technique for increasing focal depth , 2006, IEEE Transactions on Visualization and Computer Graphics.

[14]  Oliver Bimber,et al.  Embedded entertainment with smart projectors , 2005, Computer.

[15]  Oliver Bimber,et al.  Real-Time Adaptive Radiometric Compensation , 2008, IEEE Trans. Vis. Comput. Graph..

[16]  Marc Levoy,et al.  Synthetic aperture confocal imaging , 2004, SIGGRAPH 2004.

[17]  Ruigang Yang,et al.  Camera-based calibration techniques for seamless multiprojector displays , 2005, IEEE Transactions on Visualization and Computer Graphics.

[18]  Hideo Saito,et al.  Focal Pre-Correction of Projected Image for Deblurring Screen Image , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Takahiro Okabe,et al.  Radiometric Compensation in a Projector-Camera System Based Properties of Human Vision System , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[20]  Karl vom Berge,et al.  A compact factored representation of heterogeneous subsurface scattering , 2006, SIGGRAPH 2006.

[21]  Gordon Wetzstein,et al.  Enabling view-dependent stereoscopic projection in real environments , 2005, SIGGRAPH '05.

[22]  Carlo Tomasi,et al.  Alpha estimation in natural images , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[23]  Andrew Fitzgibbon,et al.  Bayesian video matting using learnt image priors , 2004, CVPR 2004.

[24]  Pieter Peers,et al.  Wavelet Environment matting , 2003, Rendering Techniques.

[25]  Gita Reese Sukthankar,et al.  Dynamic shadow elimination for multi-projector displays , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[26]  Oliver Bimber,et al.  Compensating Indirect Scattering for Immersive and Semi-Immersive Projection Displays , 2006, IEEE Virtual Reality Conference (VR 2006).

[27]  Gordon Wetzstein,et al.  The Visual Computing of Projector‐Camera Systems , 2008, SIGGRAPH '08.

[28]  Shree K. Nayar,et al.  A Projector-Camera System with Real-Time Photometric Adaptation for Dynamic Environments , 2005, CVPR.

[29]  Shree K. Nayar,et al.  Projection defocus analysis for scene capture and image display , 2006, SIGGRAPH 2006.

[30]  Kiriakos N. Kutulakos,et al.  A theory of inverse light transport , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[31]  Pieter Peers,et al.  Relighting with 4D incident light fields , 2003, ACM Trans. Graph..

[32]  Hans-Peter Seidel,et al.  DISCO: acquisition of translucent objects , 2004, ACM Trans. Graph..

[33]  Marc Levoy,et al.  Dual photography , 2005, SIGGRAPH 2005.

[34]  David Salesin,et al.  Environment matting and compositing , 1999, SIGGRAPH.

[35]  Ruigang Yang,et al.  Camera Based Calibration Techniques for Seamless Flexible Multi-Projector Displays , 2004 .

[36]  Marc Levoy,et al.  Symmetric photography: exploiting data-sparseness in reflectance fields , 2006, EGSR '06.

[37]  James F. Blinn,et al.  Blue screen matting , 1996, SIGGRAPH.

[38]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[39]  Christopher O. Jaynes,et al.  Camera-based detection and removal of shadows from interactive multiprojector displays , 2004, IEEE Transactions on Visualization and Computer Graphics.