Novel GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons

Neostriatal cholinergic interneurons are believed to be important for reinforcement-mediated learning and response selection by signaling the occurrence and motivational value of behaviorally relevant stimuli through precisely timed multiphasic population responses. An important problem is to understand how these signals regulate the functioning of the neostriatum. Here we describe the synaptic organization of a previously unknown circuit that involves direct nicotinic excitation of several classes of GABAergic interneurons, including neuroptide Y–expressing neurogilaform neurons, and enables cholinergic interneurons to exert rapid inhibitory control of the activity of projection neurons. We also found that, in vivo, the dominant effect of an optogenetically reproduced pause-excitation population response of cholinergic interneurons was powerful and rapid inhibition of the firing of projection neurons that is coincident with synchronous cholinergic activation. These results reveal a previously unknown circuit mechanism that transmits reinforcement-related information of ChAT interneurons in the mouse neostriatal network.

[1]  A. Graybiel The Basal Ganglia and Chunking of Action Repertoires , 1998, Neurobiology of Learning and Memory.

[2]  J. Berke Uncoordinated Firing Rate Changes of Striatal Fast-Spiking Interneurons during Behavioral Task Performance , 2008, The Journal of Neuroscience.

[3]  F. Welch,et al.  Causes and Consequences , 2017, Nature.

[4]  J. Changeux,et al.  Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[6]  Robert A. Pearce,et al.  Physiological evidence for two distinct GABAA responses in rat hippocampus , 1993, Neuron.

[7]  Matthew I. Banks,et al.  The Synaptic Basis of GABAA,slow , 1998, The Journal of Neuroscience.

[8]  J. Tepper,et al.  A Novel Functionally Distinct Subtype of Striatal Neuropeptide Y Interneuron , 2011, The Journal of Neuroscience.

[9]  K. Deisseroth,et al.  eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications , 2008, Brain cell biology.

[10]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[11]  E. Vaadia,et al.  Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons , 2004, Neuron.

[12]  M. S Jog,et al.  Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis techniques , 2002, Journal of Neuroscience Methods.

[13]  D. Todman Synapse , 2009, European Neurology.

[14]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[15]  Anatol C. Kreitzer,et al.  Distinct Roles of GABAergic Interneurons in the Regulation of Striatal Output Pathways , 2010, The Journal of Neuroscience.

[16]  Causes and consequences , 2021 .

[17]  J. White,et al.  Interactions between Distinct GABAA Circuits in Hippocampus , 2000, Neuron.

[18]  D. Rusakov,et al.  Slow GABA Transient and Receptor Desensitization Shape Synaptic Responses Evoked by Hippocampal Neurogliaform Cells , 2010, The Journal of Neuroscience.

[19]  Matthew I. Banks,et al.  Kinetic Differences between Synaptic and Extrasynaptic GABAA Receptors in CA1 Pyramidal Cells , 2000, The Journal of Neuroscience.

[20]  A. Graybiel,et al.  Temporal and spatial characteristics of tonically active neurons of the primate's striatum. , 1995, Journal of neurophysiology.

[21]  Huanmian Chen,et al.  Recurrent Inhibitory Network among Striatal Cholinergic Interneurons , 2008, The Journal of Neuroscience.

[22]  S. Wonnacott,et al.  Presynaptic nicotinic ACh receptors , 1997, Trends in Neurosciences.

[23]  R. Pearce,et al.  GABAA,slow: causes and consequences , 2011, Trends in Neurosciences.

[24]  J. Yakel,et al.  Desensitization of nicotinic ACh receptors: shaping cholinergic signaling , 2005, Trends in Neurosciences.

[25]  Paul Apicella,et al.  Leading tonically active neurons of the striatum from reward detection to context recognition , 2007, Trends in Neurosciences.

[26]  Ivan Soltesz,et al.  Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast , 2007, Proceedings of the National Academy of Sciences.

[27]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[28]  G. Westbrook,et al.  Slow Desensitization Regulates the Availability of Synaptic GABAA Receptors , 2000, The Journal of Neuroscience.

[29]  H. Kita,et al.  Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons , 1992, Brain Research.

[30]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. , 1989, Journal of neurophysiology.

[31]  A. Cooper,et al.  Predictive Reward Signal of Dopamine Neurons , 2011 .

[32]  P. Kalanithi,et al.  Annotation: Tourette syndrome: a relentless drumbeat--driven by misguided brain oscillations. , 2006, Journal of child psychology and psychiatry, and allied disciplines.

[33]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[34]  E. Vaadia,et al.  Midbrain Dopaminergic Neurons and Striatal Cholinergic Interneurons Encode the Difference between Reward and Aversive Events at Different Epochs of Probabilistic Classical Conditioning Trials , 2008, The Journal of Neuroscience.

[35]  J. C. Lodder,et al.  Intermittent morphine treatment induces a long‐lasting increase in cholinergic modulation of GABAergic synapses in nucleus accumbens of adult rats , 2005, Synapse.

[36]  A. Graybiel,et al.  Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. , 2001, Journal of neurophysiology.

[37]  Y. Kubota,et al.  Neostriatal GABAergic interneurones contain NOS, calretinin or parvalbumin. , 1993, Neuroreport.

[38]  Ilana B. Witten,et al.  Cholinergic Interneurons Control Local Circuit Activity and Cocaine Conditioning , 2010, Science.

[39]  S. Cragg,et al.  Nicotine amplifies reward-related dopamine signals in striatum , 2004, Nature Neuroscience.

[40]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[41]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[42]  S. E. Barker,et al.  Effective gene therapy with nonintegrating lentiviral vectors , 2006, Nature Medicine.

[43]  J. Tepper,et al.  Dual Cholinergic Control of Fast-Spiking Interneurons in the Neostriatum , 2002, The Journal of Neuroscience.

[44]  A. Graybiel,et al.  Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  B. Hyland,et al.  Firing modes of midbrain dopamine cells in the freely moving rat , 2002, Neuroscience.

[46]  Charles J. Wilson,et al.  The Mechanism of Intrinsic Amplification of Hyperpolarizations and Spontaneous Bursting in Striatal Cholinergic Interneurons , 2005, Neuron.

[47]  J. Tepper,et al.  Differential Dopaminergic Modulation of Neostriatal Synaptic Connections of Striatopallidal Axon Collaterals , 2009, The Journal of Neuroscience.

[48]  P Apicella,et al.  Influence of predictive information on responses of tonically active neurons in the monkey striatum. , 1998, Journal of neurophysiology.

[49]  J. Tepper,et al.  Electrophysiological and Morphological Characteristics and Synaptic Connectivity of Tyrosine Hydroxylase-Expressing Neurons in Adult Mouse Striatum , 2010, The Journal of Neuroscience.

[50]  John A. Dani,et al.  Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum , 2001, Nature Neuroscience.

[51]  Sabrina Ravel,et al.  Influence of spatial information on responses of tonically active neurons in the monkey striatum. , 1998, Journal of neurophysiology.

[52]  C. Saper,et al.  Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome , 2010, The Journal of comparative neurology.

[53]  J. Rajkowski,et al.  Tonically discharging putamen neurons exhibit set-dependent responses. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Tepper,et al.  Inhibitory control of neostriatal projection neurons by GABAergic interneurons , 1999, Nature Neuroscience.

[55]  L. Role,et al.  Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. , 1995, Science.

[56]  J. Berke,et al.  Fast oscillations in cortical‐striatal networks switch frequency following rewarding events and stimulant drugs , 2009, The European journal of neuroscience.

[57]  D. James Surmeier,et al.  Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons , 2010, Neuron.