Output regulation for a class of nonlinear systems using the observer based output feedback control

In this paper we study the global robust output regulation problem for a class of nonlinear systems by output feedback control. The class of systems possesses nonlinear zero-dynamics and, is thus considerably larger than systems studied in the existing literature. As an illustration of our approach, we have applied our approach to the global robust asymptotic tracking problem of the hyperchaotic Lorenz system.

[1]  Ye Xudong Brief Asymptotic regulation of time-varying uncertain nonlinear systems with unknown control directions , 1999 .

[2]  Jie Huang,et al.  Nonlinear Output Regulation: Theory and Applications , 2004 .

[3]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[4]  Jie Huang,et al.  A general framework for tackling the output regulation problem , 2004, IEEE Transactions on Automatic Control.

[5]  Xudong Ye,et al.  Asymptotic regulation of time-varying uncertain nonlinear systems with unknown control directions , 1999, Autom..

[6]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[7]  V. O. Nikiforov,et al.  Adaptive Non-linear Tracking with Complete Compensation of Unknown Disturbances , 1998, Eur. J. Control.

[8]  Zhong-Ping Jiang,et al.  A combined backstepping and small-gain approach to adaptive output feedback control , 1999, Autom..

[9]  Zhengtao Ding,et al.  Universal disturbance rejection for nonlinear systems in output feedback form , 2003, IEEE Trans. Autom. Control..

[10]  Zhong-Ping Jiang,et al.  Robust global stabilization with ignored input dynamics: an input-to-state stability (ISS) small-gain approach , 2001, IEEE Trans. Autom. Control..

[11]  R. Nussbaum Some remarks on a conjecture in parameter adaptive control , 1983 .

[12]  C. Byrnes Output Regulation of Uncertain Nonlinear Systems , 1997 .

[13]  Guanrong Chen,et al.  Hyperchaos evolved from the generalized Lorenz equation , 2005, Int. J. Circuit Theory Appl..

[14]  Guanrong Chen,et al.  Hyperchaos evolved from the generalized Lorenz equation: Research Articles , 2005 .

[15]  Qiang Jia,et al.  Hyperchaos generated from the Lorenz chaotic system and its control , 2007 .

[16]  Eduardo Sontag,et al.  Changing supply functions in input/state stable systems , 1995, IEEE Trans. Autom. Control..

[17]  Zhong-Ping Jiang,et al.  A unifying framework for global regulation via nonlinear output feedback: from ISS to iISS , 2004, IEEE Transactions on Automatic Control.