Practical t-out-n Oblivious Transfer and Its Applications

General constructions of t-out-n (string) oblivious transfers and millionaire protocol are presented using two-lock crypto-system, which enables Alice to send Bob secret without shared key. In the proposed t-out-n (string) oblivious transfer, Alice cannot determine which t messages Bob received even if she has unlimited computational power while Bob cannot learn the other n-t messages if the discrete logarithm problem is infeasible. The scheme requires constant rounds. Alice needs n+t modular exponentiations and Bob needs 2t modular exponentiations. Furthermore, the basic scheme is improved to meet public verifiability and extended to distributed oblivious transfers. As applications, efficient PIR scheme and millionaire protocol are built.

[1]  Serge Vaudenay,et al.  Cryptanalysis of the Chor-Rivest Cryptosystem , 1998, CRYPTO.

[2]  Yuliang Zheng,et al.  Advances in Cryptology — ASIACRYPT 2002 , 2002, Lecture Notes in Computer Science.

[3]  Walter Fumy,et al.  Advances in Cryptology — EUROCRYPT ’97 , 2001, Lecture Notes in Computer Science.

[4]  Julien P. Stern A new and efficient all-or-nothing disclosure of secrets protocol , 1998 .

[5]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[6]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.

[7]  Kazuo Ohta,et al.  Advances in Cryptology — ASIACRYPT’98 , 2002, Lecture Notes in Computer Science.

[8]  Yvo Desmedt,et al.  Advances in Cryptology — CRYPTO ’94 , 2001, Lecture Notes in Computer Science.

[9]  Wen-Guey Tzeng,et al.  Efficient 1-Out-n Oblivious Transfer Schemes , 2002, Public Key Cryptography.

[10]  Rainer A. Rueppel Advances in Cryptology — EUROCRYPT’ 92 , 2001, Lecture Notes in Computer Science.

[11]  Oded Goldreich,et al.  How to Solve any Protocol Problem - An Efficiency Improvement , 1987, CRYPTO.

[12]  Gilles Brassard,et al.  Oblivious Transfers and Privacy Amplification , 1997, EUROCRYPT.

[13]  Julien P. Stern A New Efficient All-Or-Nothing Disclosure of Secrets Protocol , 1998, ASIACRYPT.

[14]  Ronald L. Rivest,et al.  A Knapsack Type Public Key Cryptosystem Based On Arithmetic in Finite Fields , 1984, CRYPTO.

[15]  Masayuki Abe,et al.  1-out-of-n Signatures from a Variety of Keys , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[16]  Adi Shamir,et al.  On the security of the Merkle- Hellman cryptographic scheme (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[17]  Robert H. Deng,et al.  Variations of Diffie-Hellman Problem , 2003, ICICS.

[18]  Hugo Krawczyk,et al.  Advances in Cryptology - CRYPTO '98 , 1998 .

[19]  Ronald L. Rivest,et al.  A knapsack-type public key cryptosystem based on arithmetic in finite fields , 1988, IEEE Trans. Inf. Theory.

[20]  Hussain Ali Hussain,et al.  New multistage knapsack public-key cryptosystem , 1991 .

[21]  Gilles Brassard,et al.  Oblivious Transfers and Privacy Amplification , 1997, Journal of Cryptology.

[22]  Arto Salomaa,et al.  Public-Key Cryptography , 1991, EATCS Monographs on Theoretical Computer Science.

[23]  Carl Pomerance,et al.  Advances in Cryptology — CRYPTO ’87 , 2000, Lecture Notes in Computer Science.

[24]  Tatsuaki Okamoto,et al.  Advances in Cryptology — ASIACRYPT 2000 , 2000, Lecture Notes in Computer Science.

[25]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[26]  Oded Goldreich,et al.  A randomized protocol for signing contracts , 1985, CACM.

[27]  David Chaum,et al.  Transferred Cash Grows in Size , 1992, EUROCRYPT.

[28]  Ivan Damgård,et al.  Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols , 1994, CRYPTO.

[29]  Robert H. Deng,et al.  An Efficient and Practical Scheme for Privacy Protection in the E-Commerce of Digital Goods , 2000, ICISC.

[30]  Moni Naor,et al.  Distributed Oblivious Transfer , 2000, ASIACRYPT.

[31]  Gilles Brassard,et al.  Oblivious transfers and intersecting codes , 1996, IEEE Trans. Inf. Theory.

[32]  Jeffrey C. Lagarias,et al.  Solving Low-Density Subset Sum Problems , 1983, FOCS.

[33]  Lila Kari,et al.  Secret Selling of Secrets with Several Buyers , 1990, Bull. EATCS.

[34]  Gilles Brassard,et al.  Information theoretic reductions among disclosure problems , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).