Decreased left heart flow in fetal lambs causes left heart hypoplasia and pro-fibrotic tissue remodeling

[1]  J. Kovacic,et al.  Endothelial to Mesenchymal Transition in Health and Disease. , 2022, Annual review of physiology.

[2]  Robert H. Anderson,et al.  Clarification of the definition of hypoplastic left heart syndrome , 2021, Nature Reviews Cardiology.

[3]  M. Büttner,et al.  scCODA is a Bayesian model for compositional single-cell data analysis , 2020, Nature Communications.

[4]  Timothy J. Nelson,et al.  Intrinsic Endocardial Defects Contribute to Hypoplastic Left Heart Syndrome. , 2020, Cell stem cell.

[5]  Lihua Zhang,et al.  Inference and analysis of cell-cell communication using CellChat , 2020, Nature Communications.

[6]  Michael Brudno,et al.  CReSCENT: CanceR Single Cell ExpressioN Toolkit , 2020, bioRxiv.

[7]  S. Emani,et al.  Flow disturbances and the development of endocardial fibroelastosis. , 2020, The Journal of thoracic and cardiovascular surgery.

[8]  Joakim Lundeberg,et al.  A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart , 2019, Cell.

[9]  Aviv Regev,et al.  Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis , 2019, Cell.

[10]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[11]  Hector Roux de Bézieux,et al.  Trajectory-based differential expression analysis for single-cell sequencing data , 2019, Nature Communications.

[12]  S. Jimenez,et al.  Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. , 2019, Physiological reviews.

[13]  Gary D Bader,et al.  Evaluation of methods to assign cell type labels to cell clusters from single-cell RNA-sequencing data , 2019, bioRxiv.

[14]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[15]  Robert H. Anderson,et al.  Hypoplastic Left Heart Syndrome: A New Paradigm for an Old Disease? , 2019, Journal of cardiovascular development and disease.

[16]  Lu Wen,et al.  Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human Heart. , 2019, Cell reports.

[17]  D. J. Smith,et al.  Simultaneous parameter estimation and variable selection via the logit-normal continuous analogue of the spike-and-slab prior , 2018, Journal of the Royal Society Interface.

[18]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[19]  Ana Kozomara,et al.  miRBase: from microRNA sequences to function , 2018, Nucleic Acids Res..

[20]  A. G. Gittenberger-de Groot,et al.  Hemodynamics in Cardiac Development , 2018, Journal of cardiovascular development and disease.

[21]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[22]  A. Eckhardt,et al.  Endocardial Fibroelastosis is Secondary to Hemodynamic Alterations in the Chick Embryonic Model of Hypoplastic Left Heart Syndrome , 2018, Developmental dynamics : an official publication of the American Association of Anatomists.

[23]  Alexander Hanbo Li,et al.  Whole exome sequencing in 342 congenital cardiac left sided lesion cases reveals extensive genetic heterogeneity and complex inheritance patterns , 2017, Genome Medicine.

[24]  P. D. del Nido,et al.  Vascular Endothelial Growth Factor Prevents Endothelial-to-Mesenchymal Transition in Hypertrophy. , 2017, The Annals of thoracic surgery.

[25]  Sang-Youel Park,et al.  Fluid shear stress regulates vascular remodeling via VEGFR-3 activation, although independently of its ligand, VEGF-C, in the uterus during pregnancy , 2017, International journal of molecular medicine.

[26]  Simon Watkins,et al.  The complex genetics of hypoplastic left heart syndrome , 2017, Nature Genetics.

[27]  Russell B. Fletcher,et al.  Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics , 2018, BMC Genomics.

[28]  K. Thornburg,et al.  Blood flow patterns underlie developmental heart defects. , 2017, American journal of physiology. Heart and circulatory physiology.

[29]  Hedi Peterson,et al.  g:Profiler—a web server for functional interpretation of gene lists (2016 update) , 2016, Nucleic Acids Res..

[30]  K. Thornburg,et al.  Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep , 2015, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[31]  Alexander Dobin,et al.  Mapping RNA‐seq Reads with STAR , 2015, Current protocols in bioinformatics.

[32]  D. Koya,et al.  Interactions of DPP-4 and integrin β1 influences endothelial-to-mesenchymal transition. , 2015, Kidney international.

[33]  Jens R. Nyengaard,et al.  Dynamics of Cell Generation and Turnover in the Human Heart , 2015, Cell.

[34]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[35]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[36]  S. Dudoit,et al.  Normalization of RNA-seq data using factor analysis of control genes or samples , 2014, Nature Biotechnology.

[37]  Russell Bowler,et al.  The multiMiR R package and database: integration of microRNA–target interactions along with their disease and drug associations , 2014, Nucleic acids research.

[38]  E. Jaeggi,et al.  Fetal stenting of the atrial septum: technique and initial results in cardiac lesions with left atrial hypertension. , 2013, International journal of cardiology.

[39]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[40]  Sebastian D. Mackowiak,et al.  miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades , 2011, Nucleic acids research.

[41]  Christian Mühlfeld,et al.  A review of state-of-the-art stereology for better quantitative 3D morphology in cardiac research. , 2010, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.

[42]  Samuel Bernard,et al.  Evidence for Cardiomyocyte Renewal in Humans , 2008, Science.

[43]  Xueli Yuan,et al.  Endothelial-to-mesenchymal transition contributes to cardiac fibrosis , 2007, Nature Medicine.

[44]  K. Thornburg,et al.  Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. , 2007, Journal of applied physiology.

[45]  P. Eghtesady,et al.  Revisiting animal models of aortic stenosis in the early gestation fetus. , 2007, Annals of Thoracic Surgery.

[46]  S. Leal,et al.  Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: Segregation, multiplex relative risk, and heritability , 2005, American journal of medical genetics. Part A.

[47]  E. Lumbers,et al.  Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. , 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[48]  Gabriel Acevedo-Bolton,et al.  Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis , 2003, Nature.

[49]  T. Mayhew,et al.  Numbers of nuclei in different tissue compartments of fetal ventricular myocardium from 16 to 35 weeks of gestation , 1998, Virchows Archiv.

[50]  B L Langille,et al.  Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. , 1986, Science.

[51]  R. Zak Cell proliferation during cardiac growth. , 1973, The American journal of cardiology.

[52]  M H Paul,et al.  Experimental production of hypoplastic left heart syndrome in the chick embryo. , 1973, The American journal of cardiology.