Dynamic system identification with order statistics
暂无分享,去创建一个
[1] Ewaryst Rafaj⌈owicz. Nonparametric orthogonal series estimators of regression: A class attaining the optimal convergence rate in L2☆ , 1987 .
[2] George W. Hart,et al. Memoryless nonlinear system identification with unknown model order , 1991, IEEE Trans. Inf. Theory.
[3] N. Bary,et al. Treatise of Trigonometric Series , 1966 .
[4] Leszek Rutkowski,et al. Identification of MISO nonlinear regressions in the presence of a wide class of disturbances , 1991, IEEE Trans. Inf. Theory.
[5] M. Pawlak. On the series expansion approach to the identification of Hammerstein systems , 1991 .
[6] James Stephen Marron,et al. Choosing a Kernel Regression Estimator , 1991 .
[7] D. Brillinger. The identification of a particular nonlinear time series system , 1977 .
[8] W. Härdle,et al. Kernel regression smoothing of time series , 1992 .
[9] Stephen A. Billings,et al. Identi cation of nonlinear systems-A survey , 1980 .
[10] Adam Krzyzak,et al. On estimation of a class of nonlinear systems by the kernel regression estimate , 1990, IEEE Trans. Inf. Theory.
[11] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[12] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[13] D. Knuth,et al. Mathematics for the Analysis of Algorithms , 1999 .
[14] Wolfgang Härdle,et al. A Law of the Iterated Logarithm for Nonparametric Regression Function Estimators , 1984 .
[15] Donald W. K. Andrews. NON-STRONG MIXING AUTOREGRESSIVE PROCESSES , 1984 .
[16] A. Krzyżak. Identification of discrete Hammerstein systems by the Fourier series regression estimate , 1989 .
[17] M. Pawlak,et al. Nonparametric identification of a particular nonlinear time series system , 1992, IEEE Trans. Signal Process..
[18] G. G. Lorentz,et al. Fourier-Koeffizienten und Funktionenklassen , 1948 .
[19] G. Wahba. Spline models for observational data , 1990 .
[20] C. J. Stone,et al. Consistent Nonparametric Regression , 1977 .
[21] Wlodzimierz Greblicki,et al. Nonparametric identification of Wiener systems , 1992, IEEE Trans. Inf. Theory.
[22] Donald W. K. Andrews,et al. A nearly independent, but non-strong mixing, triangular array , 1985, Journal of Applied Probability.
[23] H. Müller,et al. Convolution type estimators for nonparametric regression , 1988 .
[24] Prakasa Rao. Nonparametric functional estimation , 1983 .
[25] M. C. Jones,et al. Spline Smoothing and Nonparametric Regression. , 1989 .
[26] W. Greblicki,et al. Fourier and Hermite series estimates of regression functions , 1985 .
[27] Miroslaw Pawlak,et al. Nonparametric identification of a cascade nonlinear time series system , 1991, Signal Process..
[28] Peter Hall,et al. A Geometrical Method for Removing Edge Effects from Kernel-Type Nonparametric Regression Estimators , 1991 .
[29] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[30] Wolfgang Härdle,et al. Nonparametric Curve Estimation from Time Series , 1989 .
[31] W. Greblicki. Non-parametric orthogonal series identification of Hammerstein systems , 1989 .
[32] A. Georgiev. Nonparametric kernel algorithm for recovery of functions from noisy measurements with applications , 1985 .
[33] Ker-Chau Li,et al. Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .
[34] Miroslaw Pawlak,et al. Nonparametric identification of Hammerstein systems , 1989, IEEE Trans. Inf. Theory.