Dynamic system identification with order statistics

Systems consisting of linear dynamic and memory-less nonlinear subsystems are identified. The paper deals with systems in which the nonlinear element is followed by a linear element, as well as systems in which the subsystems are connected in parallel. The goal of the identification is to recover the nonlinearity from noisy input-output observations of the whole system; signals interconnecting the elements are not measured. Observed values of the input signal are rearranged in increasing order, and coefficients for the expansion of the nonlinearity in trigonometric series are estimated from the new sequence of observations obtained in this way. Two algorithms are presented, and their mean integrated square error is examined. Conditions for pointwise convergence are also established. For the nonlinearity satisfying the Lipschitz condition, the error converges to zero. The rate of convergence derived for differentiable nonlinear characteristics is insensitive to the roughness of the probability density of the input signal. Results of numerical simulation are also presented. >

[1]  Ewaryst Rafaj⌈owicz Nonparametric orthogonal series estimators of regression: A class attaining the optimal convergence rate in L2☆ , 1987 .

[2]  George W. Hart,et al.  Memoryless nonlinear system identification with unknown model order , 1991, IEEE Trans. Inf. Theory.

[3]  N. Bary,et al.  Treatise of Trigonometric Series , 1966 .

[4]  Leszek Rutkowski,et al.  Identification of MISO nonlinear regressions in the presence of a wide class of disturbances , 1991, IEEE Trans. Inf. Theory.

[5]  M. Pawlak On the series expansion approach to the identification of Hammerstein systems , 1991 .

[6]  James Stephen Marron,et al.  Choosing a Kernel Regression Estimator , 1991 .

[7]  D. Brillinger The identification of a particular nonlinear time series system , 1977 .

[8]  W. Härdle,et al.  Kernel regression smoothing of time series , 1992 .

[9]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[10]  Adam Krzyzak,et al.  On estimation of a class of nonlinear systems by the kernel regression estimate , 1990, IEEE Trans. Inf. Theory.

[11]  L. Devroye,et al.  Nonparametric Density Estimation: The L 1 View. , 1985 .

[12]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[13]  D. Knuth,et al.  Mathematics for the Analysis of Algorithms , 1999 .

[14]  Wolfgang Härdle,et al.  A Law of the Iterated Logarithm for Nonparametric Regression Function Estimators , 1984 .

[15]  Donald W. K. Andrews NON-STRONG MIXING AUTOREGRESSIVE PROCESSES , 1984 .

[16]  A. Krzyżak Identification of discrete Hammerstein systems by the Fourier series regression estimate , 1989 .

[17]  M. Pawlak,et al.  Nonparametric identification of a particular nonlinear time series system , 1992, IEEE Trans. Signal Process..

[18]  G. G. Lorentz,et al.  Fourier-Koeffizienten und Funktionenklassen , 1948 .

[19]  G. Wahba Spline models for observational data , 1990 .

[20]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[21]  Wlodzimierz Greblicki,et al.  Nonparametric identification of Wiener systems , 1992, IEEE Trans. Inf. Theory.

[22]  Donald W. K. Andrews,et al.  A nearly independent, but non-strong mixing, triangular array , 1985, Journal of Applied Probability.

[23]  H. Müller,et al.  Convolution type estimators for nonparametric regression , 1988 .

[24]  Prakasa Rao Nonparametric functional estimation , 1983 .

[25]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[26]  W. Greblicki,et al.  Fourier and Hermite series estimates of regression functions , 1985 .

[27]  Miroslaw Pawlak,et al.  Nonparametric identification of a cascade nonlinear time series system , 1991, Signal Process..

[28]  Peter Hall,et al.  A Geometrical Method for Removing Edge Effects from Kernel-Type Nonparametric Regression Estimators , 1991 .

[29]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[30]  Wolfgang Härdle,et al.  Nonparametric Curve Estimation from Time Series , 1989 .

[31]  W. Greblicki Non-parametric orthogonal series identification of Hammerstein systems , 1989 .

[32]  A. Georgiev Nonparametric kernel algorithm for recovery of functions from noisy measurements with applications , 1985 .

[33]  Ker-Chau Li,et al.  Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .

[34]  Miroslaw Pawlak,et al.  Nonparametric identification of Hammerstein systems , 1989, IEEE Trans. Inf. Theory.