Wearable robotic systems can be used to assist people suffering paralysis from stroke. This paper presents the mechanical design, electronics and control structure of a powered ankle foot orthosis for stroke survivors walking on a treadmill. the mechanical structure consists of a powered orthosis using a robotic tendon that uses a motor to correctly position a tuned spring in the gait pattern. During the gait cycle, the robotic tendon regenerates spring energy and uses that energy in order to assist the subject in push off and follow through into the swing phase of gait. Rather than using a motor and gearbox having several times the weight of the foot, which can supply the required peak power, a reduced energy robotic device is built with a 0.95 kg actuator that uses one third of the power and one half of the energy required by a standard motor/gearbox solution. This device controls the equilibrium position of the spring using a closed loop position controller. A real time embedded system was developed in the Matlab Simulink environment to form hardware in the loop simulations and allow rapid control prototyping. Not only direct-control is demonstrated using a predefined gait pattern but also State Logic is developed in order to determine the user's desired gait pattern. Experimental data, gathered from able body subjects walking on a treadmill prove that the system can assist gait by decreasing the peak power that a subject should supply by 50%. It is also demonstrated that springs can apply regenerative braking and that the concept is feasible and applicable in developing lightweight, functional wearable robots.
[1]
Andy Ruina,et al.
A Bipedal Walking Robot with Efficient and Human-Like Gait
,
2005,
Proceedings of the 2005 IEEE International Conference on Robotics and Automation.
[2]
Warren E. Dixon,et al.
Nonlinear Control of Engineering Systems
,
2002
.
[3]
Akihito Sano,et al.
Analysis of limit cycle in passive walking
,
2003,
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).
[4]
Thomas Sugar,et al.
Dynamically Controlled Ankle-Foot Orthosis (DCO) with Regenerative Kinetics: Incrementally Attaining User Portability
,
2007,
Proceedings 2007 IEEE International Conference on Robotics and Automation.
[5]
Robert Ilg,et al.
An efficient robotic tendon for gait assistance.
,
2006,
Journal of biomechanical engineering.
[6]
Hugh M. Herr,et al.
An ankle-foot emulation system for the study of human walking biomechanics
,
2006,
Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..
[7]
Jeffrey A. Ward,et al.
Dynamic Pace Controller for the Robotic Gait Trainer
,
2006
.
[8]
Warren E. Dixon,et al.
Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach
,
2003
.