Markov models and Bayesian methods in image analysis

Markov random field models and Bayesian methods have provided answers to various contemporary problems in image analysis. We give a very brief introduction to the topic. In particular, we highlight the use of Bayesian methods in classifying the image into different classes. Some other current developments are also described and their relationship with other chapters in this volume is indicated. Some future directions are also outlined.

[1]  A. L. Sutherland,et al.  Finding spiral structures in images of galaxies , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[2]  D. M. Keenan,et al.  Towards automated image understanding , 1989 .

[3]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Peter Clifford,et al.  Reconstruction of polygonal images , 1989 .

[5]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[6]  B. Ripley,et al.  Using spatial models as priors in astronomical image analysis , 1989 .

[7]  David B. Cooper,et al.  Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Josef Kittler,et al.  Contextual classification of multispectral pixel data , 1984, Image Vis. Comput..

[9]  Kanti V. Mardia,et al.  Spatial discrimination and classification maps , 1984 .

[10]  K. Mardia,et al.  Digital Image Processing: Statistical aspects of moment invariants in image analysis , 1989 .

[11]  Kanti V. Mardia,et al.  Spatial Classification Using Fuzzy Membership Models , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  W. Qian,et al.  On the use of Gibbs Markov chain models in the analysis of images based on second-order pairwise interactive distributions , 1989 .

[13]  M. C. Jones,et al.  An orthogonal series density estimation approach to reconstructing positron emission tomography images , 1989 .

[14]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[15]  J. D. Wilson,et al.  A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography , 1990 .

[16]  P. Green On Use of the EM Algorithm for Penalized Likelihood Estimation , 1990 .

[17]  U. Grenander Advances in Pattern Theory , 1989 .

[18]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[19]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[20]  P. A. Devijver Real-time modeling of image sequences based on hidden Markov mesh random field models , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[21]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  D. Geman Random fields and inverse problems in imaging , 1990 .

[24]  Basilis Gidas,et al.  A Renormalization Group Approach to Image Processing Problems , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  P. A. Chou,et al.  Recognition of Equations Using a Two-Dimensional Stochastic Context-Free Grammar , 1989, Other Conferences.

[26]  B. Schorr,et al.  On properties of the iterative maximum likelihood reconstruction method , 1989 .

[27]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[28]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[29]  L. Shepp,et al.  A Statistical Model for Positron Emission Tomography , 1985 .

[30]  B. Ripley Statistical inference for spatial processes , 1990 .

[31]  Anil K. Jain,et al.  Random field models in image analysis , 1989 .

[32]  Paul Switzer,et al.  Extensions of linear discriminant analysis for statistical classification of remotely sensed satellite imagery , 1980 .

[33]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[34]  B. Frieden Stochastic approaches to inversion problems in optics , 1989 .

[35]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[36]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[37]  W. A. Wright A Markov random field approach to data fusion and colour segmentation , 1989, Image Vis. Comput..

[38]  Donald Geman,et al.  Boundary Detection by Constrained Optimization , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  K. Mardia Multi-dimensional multivariate Gaussian Markov random fields with application to image processing , 1988 .

[40]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[41]  Kanti V. Mardia,et al.  A Spatial Thresholding Method for Image Segmentation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..