Regularized Maxwell Equations and Nodal Finite Elements for Electromagnetic Field Computations

Abstract This article presents an alternative approach to the usual finite element formulation based on edge elements and double-curl Maxwell equations. This alternative approach is based on nodal elements and regularized Maxwell equations. The advantage is that, without adding extra unknowns (such as Lagrange multipliers), it provides spurious-free solutions and well-conditioned matrices. The drawback is that a globally wrong solution is obtained when the electromagnetic field has a singularity in the problem domain. The main objective of this work is to obtain accurate solutions with nodal elements and the regularized formulation, even in the presence of electromagnetic field singularities.

[1]  J. P. Webb Edge Elements and What They Can Do for You , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[2]  R. Mansour,et al.  Simplified description of the field distribution in finlines and ridge waveguides and its application to the analysis of E-plane discontinuities , 1988, 1988., IEEE MTT-S International Microwave Symposium Digest.

[3]  Magdalena Salazar-Palma,et al.  Iterative and self-adaptive finite-elements in electromagnetic modeling , 1998 .

[4]  J. Bladel Singular electromagnetic fields and sources , 1996 .

[5]  K. D. Paulsen,et al.  Three-dimensional finite, boundary, and hybrid element solutions of the Maxwell equations for lossy dielectric media , 1988 .

[6]  Jose R. Montejo-Garai,et al.  Full- Wave Design and Realization of Multicoupled Dual-Mode Circular Waveguide Filters JosC R. Montejo-Garai and , 1995 .

[7]  Christophe Hazard,et al.  On the solution of time-harmonic scattering problems for Maxwell's equations , 1996 .

[8]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[9]  Ioan E. Lager,et al.  The finite element modeling of static and stationary electric and magnetic fields , 1996 .

[10]  Franck Assous,et al.  The Singular Complement Method , 2001 .

[11]  Christophe Hazard,et al.  A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..

[12]  Keith D. Paulsen,et al.  Nodal-based finite-element modeling of Maxwell's equations , 1992 .

[13]  H. Katzier,et al.  Streuverhalten elektromagnetischer Wellen bei sprunghaften Übergängen geschirmter dielektrischer Leitungen , 1984 .

[14]  M. Costabel,et al.  Maxwell and Lamé eigenvalues on polyhedra , 1999 .

[15]  Tapan K. Sarkar,et al.  Iterative and Self-Adaptive Finite-Elements in Electromagnetic Modeling , 1998 .

[16]  W. E. Boyse,et al.  A hybrid finite element method for 3-D scattering using nodal and edge elements , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.

[17]  G. Mur Edge elements, their advantages and their disadvantages , 1994 .

[18]  Manfred Kaltenbacher,et al.  Appropriate finite-element formulations for 3-D electromagnetic-field problems , 2002 .

[19]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[20]  G. Mur The fallacy of edge elements , 1998 .

[21]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[22]  K. Preis,et al.  Gauged Current Vector Potential and Reentrant Corners in the FEM Analysis of 3D , 2003 .

[23]  Keith D. Paulsen,et al.  Numerical treatment of boundary conditions at points connecting more than two electrically distinct regions , 1987 .

[24]  M. Costabel A coercive bilinear form for Maxwell's equations , 1991 .

[25]  Patrick Ciarlet,et al.  Augmented formulations for solving Maxwell equations , 2005 .

[26]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.