On the Use of Nonlinear Boundary-Value Problems to Estimate the Cloud-Formation Potential of Aerosol Particles

This paper investigates the transient growth of aerosol particles in a humid environment. It seeks to explore the dependence of the fraction of droplet-forming particles on statistical properties of the distribution of dry particle diameters, as well as on the rate of temperature decay associated with vertical motion through the atmosphere. Low-dimensional, autonomous models are investigated using basic tools of dynamical systems analysis that establish the parameter-dependent existence and stability of families of equilibrium distributions of wet particle diameters. In the fully nonautonomous case, an original heuristic parameterization of the fraction of droplet-forming particles is derived in terms of a scalar, nonlinear boundary-value problem. To address the failure of the heuristic parameterization to account for the potential of a dynamic reversal of growth following an initial increase in particle diameter, a finely resolved, high-dimensional boundary-value formulation for the aerosol dynamics is i...

[1]  J. F. Andrus,et al.  Numerical Solution of Systems of Ordinary Differential Equations Separated into Subsystems , 1979 .

[2]  Vijay Kumar,et al.  An asynchronous integration and event detection algorithm for simulating multi-agent hybrid systems , 2004, TOMC.

[3]  Meinrat O. Andreae,et al.  Aerosol cloud precipitation interactions. Part 1. The nature and sources of cloud-active aerosols , 2008 .

[4]  M. Andreae Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions , 2008 .

[5]  S. Ghan,et al.  Competition between Sea Salt and Sulfate Particles as Cloud Condensation Nuclei , 1998 .

[6]  M. Komppula,et al.  Parameterization of cloud droplet activation using a simplified treatment of the aerosol number size distribution , 2008 .

[7]  Wing Kam Liu,et al.  Convergence of an element‐partitioned subcycling algorithm for the semi‐discrete heat equation , 1987 .

[8]  Prashant Kumar,et al.  Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN , 2009 .

[9]  Mikhail Ovchinnikov,et al.  Droplet nucleation: Physically‐based parameterizations and comparative evaluation , 2011 .

[10]  Matthew West,et al.  Impacts of black carbon mixing state on black carbon nucleation scavenging: Insights from a particle‐resolved model , 2012 .

[11]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[12]  A. Korolev,et al.  Analytical estimation of droplet concentration at cloud base , 2012 .

[13]  M. Andreae,et al.  Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles , 2006, Science.

[14]  Adriano Aguzzi,et al.  Aerosols , 2011 .

[15]  Steven J. Ghan,et al.  A parameterization of aerosol activation: 1. Single aerosol type , 1998 .

[16]  V. Ramaswamy,et al.  A New Parameterization of Cloud Droplet Activation Applicable to General Circulation Models , 2006 .

[17]  Aerosol-Cloud-Precipitation Interactions : Shallow Cumulus , 2022 .

[18]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[19]  V. Kerminen,et al.  Influence of organic compounds on the cloud droplet activation: A model investigation considering the volatility, water solubility, and surface activity of organic matter , 2002 .

[20]  S. Ghan,et al.  Kinetic limitations on cloud droplet formation and impact on cloud albedo , 2001 .

[21]  Y. Y. Lu,et al.  Convergence and stability analyses of multi-time step algorithm for parabolic systems , 1993 .

[22]  Wing Kam Liu,et al.  Stability of multi-time step partitioned integrators for first-order finite element systems , 1985 .

[23]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[24]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[25]  C. O'Dowd,et al.  Flood or Drought: How Do Aerosols Affect Precipitation? , 2008, Science.

[26]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[27]  R. C. Easter,et al.  Estimating Black Carbon Aging Time-Scales with a Particle-Resolved Aerosol Model , 2009, 0903.0029.

[28]  S. Ghan,et al.  A parameterization of cloud droplet nucleation part I: single aerosol type , 1993 .

[29]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[30]  Willem Hundsdorfer,et al.  A multirate time stepping strategy for stiff ordinary differential equations , 2007 .

[31]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[32]  P. Rentrop,et al.  Multirate Partitioned Runge-Kutta Methods , 2001 .

[33]  J. Marsden,et al.  Variational time integrators , 2004 .

[34]  N. Mahowald Aerosol Indirect Effect on Biogeochemical Cycles and Climate , 2011, Science.

[35]  J. H. Seinfeld,et al.  Kinetic limitations on droplet formation in clouds , 1997, Nature.

[36]  P. Daum,et al.  Anthropogenic aerosols: Indirect warming effect from dispersion forcing , 2002, Nature.

[37]  C. W. Gear,et al.  Multirate linear multistep methods , 1984 .

[38]  J. Seinfeld,et al.  Parameterization of cloud droplet formation in global climate models , 2003 .

[39]  Robert D. Russell,et al.  Collocation for systems of boundary value problems , 1974 .

[40]  A. Korolev,et al.  Supersaturation and Diffusional Droplet Growth in Liquid Clouds , 2013 .

[41]  T. Belytschko,et al.  Explicit multi-time step integration for first and second order finite element semidiscretizations , 1993 .

[42]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[43]  A. Wexler,et al.  Microphysics of aqueous droplets in clouds and fogs as applied to PM-fine modeling , 2001 .