Bioelectronics for Amperometric Biosensors

The Discrete-to-Integrated Electronics group (D2In), at the University of Barcelona, in partnership with the Bioelectronics and Nanobioengineering Group (SICBIO), is researching Smart Self-Powered Bio-Electronic Systems. Our interest is focused on the development of custom built electronic solutions for bio-electronics applications, from discrete devices to Application-specific integrated circuit (ASIC) solutions.

[1]  V. Gold Compendium of chemical terminology , 1987 .

[2]  Jordi Colomer-Farrarons,et al.  A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices: Three-Electrodes Amperometric Biosensor Approach , 2011 .

[3]  M. Sawan,et al.  Toward Fully Integrated CMOS Based Capacitive Sensor for Lab-on-Chip Applications , 2008, 2008 IEEE International Workshop on Medical Measurements and Applications.

[4]  Chao Yang,et al.  Amperometric Electrochemical Microsystem for a Miniaturized Protein Biosensor Array , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[5]  Lin Li,et al.  CMOS Amperometric Instrumentation and Packaging for Biosensor Array Applications , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[6]  Richard B. Brown,et al.  A mixed-signal sensor interface microinstrument , 2001 .

[7]  G. Cauwenberghs,et al.  Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[8]  Á. Ríos,et al.  Miniaturization through lab-on-a-chip: utopia or reality for routine laboratories? A review. , 2012, Analytica chimica acta.

[9]  D. C. Silverman,et al.  Electrochemical Impedance: Analysis and Interpretation , 1993 .

[10]  Gregory T. A. Kovacs,et al.  An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[11]  C. Ahn,et al.  Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement , 2007 .

[12]  Su-Moon Park,et al.  Novel instrumentation in electrochemical impedance spectroscopy and a full description of an electrochemical system , 2006 .

[13]  Wilfred Chen,et al.  Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. , 2003, Biosensors & bioelectronics.

[14]  Laurent Francis,et al.  State of the Art in Biosensors - General Aspects , 2013 .

[15]  Graham A. Jullien,et al.  Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  P. Miribel-Catala,et al.  A low power CMOS biopotentiostat in a low-voltage 0.13 µm digital technology , 2009, 2009 52nd IEEE International Midwest Symposium on Circuits and Systems.

[17]  Giovanni Chiorboli,et al.  A CMOS vector lock-in amplifier for sensor applications , 2010, Microelectron. J..

[18]  Josep Samitier,et al.  Portable Bio-Devices: Design of electrochemical instruments from miniaturized to implantable devices , 2011 .

[19]  Richard B. Brown,et al.  A low-voltage, chemical sensor interface for systems-on-chip: the fully-differential potentiostat , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[20]  Jichun Zhang,et al.  A low noise readout circuit for integrated electrochemical biosensor arrays , 2004, Proceedings of IEEE Sensors, 2004..

[21]  C. Martelet,et al.  Feasibility of an immunosensor based upon capacitance measurements , 1989 .

[22]  A. Hastings The Art of Analog Layout , 2000 .

[23]  G. Johansson,et al.  Capacitance measurements of antibody-antigen interactions in a flow system. , 1997, Analytical chemistry.

[24]  Giuseppe Ferri,et al.  A low-voltage integrated CMOS analog lock-in amplifier prototype for LAPS applications , 2001 .

[25]  R. Kakerow,et al.  Low-power Single-chip CMOS Potentiostat , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[26]  G. Cauwenberghs,et al.  16-channel wide-range VLSI potentiostat array , 2004, IEEE International Workshop on Biomedical Circuits and Systems, 2004..

[27]  A. Hierlemann,et al.  CMOS microelectrode array for the monitoring of electrogenic cells. , 2004, Biosensors & bioelectronics.

[28]  D. Barrettino,et al.  Design considerations and recent advances in CMOS-based microsystems for point-of-care clinical diagnostics , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[29]  Bradley A. Minch,et al.  Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[31]  B. Calvo,et al.  A low-power high-sensitivity CMOS voltage-to-frequency converter , 2009, 2009 52nd IEEE International Midwest Symposium on Circuits and Systems.

[32]  Graham A. Jullien,et al.  A very low power CMOS potentiostat for bioimplantable applications , 2005, Fifth International Workshop on System-on-Chip for Real-Time Applications (IWSOC'05).

[33]  R.B. Brown,et al.  A Fully Differential Potentiostat , 2009, IEEE Sensors Journal.

[34]  R. Jacob Baker,et al.  CMOS Circuit Design, Layout, and Simulation , 1997 .

[35]  Sheroz Khan,et al.  A low-cost first-order sigma-delta converter design and analysis , 2011, 2011 IEEE International Instrumentation and Measurement Technology Conference.

[36]  R. Genov,et al.  256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes , 2009, IEEE Journal of Solid-State Circuits.

[37]  Richard B. Brown,et al.  Integrated electrochemical neurosensors , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[38]  C. Galup-Montoro,et al.  Nanowatt, Sub-nS OTAs, With Sub-10-mV Input Offset, Using Series-Parallel Current Mirrors , 2006, IEEE Journal of Solid-State Circuits.

[39]  F.H. Gebara,et al.  A CMOS-integrated microinstrument for trace detection of heavy metals , 2005, IEEE Journal of Solid-State Circuits.

[40]  Ling Lin,et al.  A novel algorithm combining oversampling and digital lock-in amplifier of high speed and precision. , 2011, The Review of scientific instruments.

[41]  Che-Hsin Lin,et al.  Electrophoresis separation and electrochemical detection on a novel line-based microfluidic device , 2012 .

[42]  R. Glass,et al.  Impedance Characterization of a Model Au ∕ Yttria -Stabilized Zirconia ∕ Au Electrochemical Cell in Varying Oxygen and NO x Concentrations , 2006 .

[43]  Shantanu Chakrabartty,et al.  A Multichannel Femtoampere-Sensitivity Potentiostat Array for Biosensing Applications , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[44]  Mart Min,et al.  Lock-in measurement of bio-impedance variations , 2000 .

[45]  Andrew Wilkinson Compendium of Chemical Terminology , 1997 .

[46]  J.G. Harris,et al.  A time-based VLSI potentiostat for ion current measurements , 2006, IEEE Sensors Journal.

[47]  N. Jaffrezic‐Renault,et al.  Direct detection of immunospecies by capacitance measurements. , 1988, Analytical chemistry.

[48]  Edgar Sanchez-Sinencio,et al.  Transconductance amplifier structures with very small transconductances: a comparative design approach , 2002 .

[49]  Chun-Yueh Huang Design of a voltammetry potentiostat for biochemical sensors , 2011 .

[50]  M. Kimura,et al.  Chronoamperometry Using Integrated Potentiostat Consisting of Poly-Si Thin-Film Transistors , 2011, IEEE Electron Device Letters.

[51]  Carlos A. Marqués,et al.  Digital lock in amplifier: study, design and development with a digital signal processor , 2004, Microprocess. Microsystems.

[52]  张翀,et al.  A high precision CMOS weak current readout circuit , 2009 .

[53]  Miloslav Nic,et al.  Chemical terminology at your fingertips , 2006 .

[54]  Daeyeon Kim,et al.  A Low-Voltage Processor for Sensing Applications With Picowatt Standby Mode , 2009, IEEE Journal of Solid-State Circuits.

[55]  Thomas Otto,et al.  Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. , 2012, Lab on a chip.

[56]  R. Hogervorst,et al.  A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[57]  D. Walt,et al.  CMOS Microelectrode Array for Electrochemical Lab-on-a-Chip Applications , 2009, IEEE Sensors Journal.

[58]  Rahul Sarpeshkar Universal Principles for Ultra Low Power and Energy Efficient Design , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[59]  W. Heineman,et al.  Laboratory techniques in electroanalytical chemistry , 1984 .

[60]  J. Colomer-Farrarons,et al.  CMOS front-end architecture for In-Vivo biomedical implantable devices , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[61]  David Blaauw,et al.  Energy-Efficient Subthreshold Processor Design , 2009, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.