Cell Physiology and Protein Secretion of Bacillus licheniformis Compared to Bacillus subtilis

The genome sequence of Bacillus subtilis was published in 1997 and since then many other bacterial genomes have been sequenced, among them Bacillus licheniformis in 2004. B. subtilis and B. licheniformis are closely related and feature similar saprophytic lifestyles in the soil. Both species can secrete numerous proteins into the surrounding medium enabling them to use high-molecular-weight substances, which are abundant in soils, as nutrient sources. The availability of complete genome sequences allows for the prediction of the proteins containing signals for secretion into the extracellular milieu and also of the proteins which form the secretion machinery needed for protein translocation through the cytoplasmic membrane. To confirm the predicted subcellular localization of proteins, proteomics is the best choice. The extracellular proteomes of B. subtilis and B. licheniformis have been analyzed under different growth conditions allowing comparisons of the extracellular proteomes and conclusions regarding similarities and differences of the protein secretion mechanisms between the two species.

[1]  Michael Hecker,et al.  A proteomic view of cell physiology of Bacillus licheniformis , 2004, Proteomics.

[2]  Uwe Völker,et al.  Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics , 2004, Proteomics.

[3]  Jörg Bernhardt,et al.  The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions , 2006, Proteomics.

[4]  K. Yamane,et al.  Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. , 2000, Microbiology.

[5]  Michael Hecker,et al.  Phosphate Starvation-Inducible Proteins ofBacillus subtilis: Proteomics and Transcriptional Analysis , 2000, Journal of bacteriology.

[6]  K. Devine,et al.  Copyright © 1998, American Society for Microbiology Lysis Genes of the Bacillus subtilis Defective Prophage PBSX , 1997 .

[7]  M. Hecker,et al.  The extracellular proteome of Bacillus subtilis under secretion stress conditions , 2003, Molecular microbiology.

[8]  F. Hulett The Pho Regulon , 2002 .

[9]  Ajay Singh,et al.  Developments in the use of Bacillus species for industrial production. , 2004, Canadian journal of microbiology.

[10]  U. Bläsi,et al.  Holins: form and function in bacteriophage lysis. , 1995, FEMS microbiology reviews.

[11]  M. Hecker,et al.  Proteomic survey through secretome of Bacillus subtilis. , 2006, Methods of biochemical analysis.

[12]  R. Losick,et al.  Bacillus subtilis and Its Closest Relatives , 2002 .

[13]  M. Hecker,et al.  TatC Is a Specificity Determinant for Protein Secretion via the Twin-arginine Translocation Pathway* , 2000, The Journal of Biological Chemistry.

[14]  J. V. van Dijl,et al.  Proteomics‐based consensus prediction of protein retention in a bacterial membrane , 2005, Proteomics.

[15]  A. Horswill,et al.  Salmonella typhimurium LT2 Catabolizes Propionate via the 2-Methylcitric Acid Cycle , 1999, Journal of bacteriology.

[16]  M. Hecker,et al.  FlhF, the Third Signal Recognition Particle-GTPase of Bacillus subtilis, Is Dispensable for Protein Secretion , 2004, Journal of bacteriology.

[17]  M. Hecker,et al.  The phosphate‐starvation response of Bacillus licheniformis , 2006, Proteomics.

[18]  M. Hecker,et al.  Proteomic dissection of potential signal recognition particle dependence in protein secretion by Bacillus subtilis , 2006, Proteomics.

[19]  M. Sarvas,et al.  Lipid modification of prelipoproteins is dispensable for growth but essential for efficient protein secretion in Bacillus subtilis: characterization of the lgt gene , 1999, Molecular microbiology.

[20]  Michael Hecker,et al.  Role of CcpA in Regulation of the Central Pathways of Carbon Catabolism in Bacillus subtilis , 1999, Journal of bacteriology.

[21]  Sarah Dubrac,et al.  Dual Role of the PhoP∼P Response Regulator: Bacillus amyloliquefaciens FZB45 Phytase Gene Transcription Is Directed by Positive and Negative Interactions with the phyC Promoter , 2006 .

[22]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[23]  A. Steinbüchel,et al.  Biochemical and genetic analyses of acetoin catabolism in Alcaligenes eutrophus , 1989, Journal of bacteriology.

[24]  S. Tasker,et al.  Bergey’s Manual of Systematic Bacteriology , 2010 .

[25]  Jörg Bernhardt,et al.  Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[26]  M. Hecker,et al.  The glucose and nitrogen starvation response of Bacillus licheniformis , 2007, Proteomics.

[27]  J. Kok,et al.  The anaerobic (class III) ribonucleotide reductase from Lactococcus lactis. Catalytic properties and allosteric regulation of the pure enzyme system. , 2000, The Journal of biological chemistry.

[28]  Pär Nordlund,et al.  Ribonucleotide reductases. , 2006, Annual review of biochemistry.

[29]  S Dusko Ehrlich,et al.  Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species , 2004, Genome Biology.

[30]  M. S. Brody,et al.  Catalytic Function of an α/β Hydrolase Is Required for Energy Stress Activation of the ςB Transcription Factor inBacillus subtilis , 2001, Journal of bacteriology.

[31]  M. Hecker,et al.  Separate mechanisms activate sigma B of Bacillus subtilis in response to environmental and metabolic stresses , 1995, Journal of bacteriology.

[32]  H. Sahm,et al.  The Phosphate Starvation Stimulon of Corynebacterium glutamicum Determined by DNA Microarray Analyses , 2003, Journal of bacteriology.

[33]  Frens Pries,et al.  Selective Contribution of the Twin-Arginine Translocation Pathway to Protein Secretion in Bacillus subtilis * , 2002, The Journal of Biological Chemistry.

[34]  M. Hecker,et al.  Structure-Function Analysis of PrsA Reveals Roles for the Parvulin-like and Flanking N- and C-terminal Domains in Protein Folding and Secretion in Bacillus subtilis* , 2004, Journal of Biological Chemistry.

[35]  P. Sneath Endospore-forming gram-positive rods and cocci, , 1986 .

[36]  M. Hecker,et al.  Stabilization of cell wall proteins in Bacillus subtilis: A proteomic approach , 2002, Proteomics.

[37]  Jan Maarten van Dijl,et al.  A proteomic view on genome-based signal peptide predictions. , 2001, Genome research.

[38]  Oscar P. Kuipers,et al.  Proteomics of Protein Secretion by Bacillus subtilis: Separating the “Secrets” of the Secretome , 2004, Microbiology and Molecular Biology Reviews.

[39]  T. Henkin,et al.  Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis , 1993, Molecular microbiology.

[40]  D. Dubnau,et al.  DNA uptake in bacteria. , 1999, Annual review of microbiology.

[41]  C. Moran,et al.  A sigma E dependent operon subject to catabolite repression during sporulation in Bacillus subtilis , 1996, Journal of bacteriology.

[42]  Nicola Zamboni,et al.  Genome engineering reveals large dispensable regions in Bacillus subtilis. , 2003, Molecular biology and evolution.

[43]  A. Steinbüchel,et al.  Biochemical and Molecular Characterization of theBacillus subtilis Acetoin Catabolic Pathway , 1999, Journal of bacteriology.

[44]  Rainer Merkl,et al.  The Complete Genome Sequence of Bacillus licheniformis DSM13, an Organism with Great Industrial Potential , 2004, Journal of Molecular Microbiology and Biotechnology.

[45]  Anne de Jong,et al.  Protein transport pathways in Bacillus subtilis: a genome-based road map , 2001 .

[46]  Sierd Bron,et al.  Two minimal Tat translocases in Bacillus , 2004, Molecular microbiology.

[47]  S. Bron,et al.  Signal Peptide-Dependent Protein Transport inBacillus subtilis: a Genome-Based Survey of the Secretome , 2000, Microbiology and Molecular Biology Reviews.

[48]  Jörg Bernhardt,et al.  Genome-wide mRNA profiling in glucose starved Bacillus subtilis cells , 2005, Molecular Genetics and Genomics.