Role of the active-site carboxylate in dihydrofolate reductase: kinetic and spectroscopic studies of the aspartate 26-->asparagine mutant of the Lactobacillus casei enzyme.

A mutant of Lactobacillus casei dihydrofolate reductase, D26N, in which the active site aspartic acid residue has been replaced by asparagine by oligonucleotide-directed mutagenesis has been studied by NMR and optical spectroscopy and its kinetic behavior characterized in detail. On the basis of comparisons of a large number of chemical shifts and NOEs, it is clear that there are only very slight structural differences between the methotrexate complexes of the wild-type and mutant enzymes and that these are restricted to the immediate environment of the substitution. The data suggest a slight difference in orientation of the pteridine ring in the binding site in the mutant enzyme. Both NMR and UV spectroscopy show that methotrexate is protonated on N1 when bound to the wild-type enzyme but not when bound to the mutant. Binding constant measurements by fluorescence quenching and steady-state kinetic measurements of dihydrofolate (FH2) and folate reduction show that the substitution has little or no effect on substrate, coenzyme, and inhibitor binding (< 7-fold increase in Kd) and only a modest effect on kcat (up to a factor of 9 for FH2 and 25 for folate) and kcat/KM (up to a factor of 13 for FH2 and 14 for folate). Measurements of deuterium isotope effects and direct measurements of hydride ion transfer and product release by stopped-flow methods revealed that for the mutant enzyme hydride ion transfer is rate-limiting across the pH range 5-8. This allowed a direct comparison of the rate of hydride ion transfer in the wild-type and mutant enzymes; the asparagine substitution was found to decrease this rate by 62-fold at pH 5.5 and 9-fold at pH 7.5. This effect is much smaller than that seen for the corresponding mutant of Escherichia coli dihydrofolate reductase [Howell, E. E., Villafranca, J. E., Warren, M. S., Oatley, S. J., & Kraut, J. (1986) Science 231, 1123-1128], estimated as a 1000-fold decrease in the rate of hydride ion transfer. The change in pH dependence of kcat resulting from the substitution is consistent with, but does not prove, the idea that the group of pK 6.0 which must be protonated for hydride ion transfer to occur is Asp26. For folate reduction, the pH dependence of kcat is determined by two pKs, one of which, pK 5, disappears in the mutant enzyme, suggesting that it may correspond to ionization of Asp26.(ABSTRACT TRUNCATED AT 400 WORDS)