Monolith-Supported Amine-Functionalized Mg2(dobpdc) Adsorbents for CO2 Capture.

The potential of using an amine-functionalized metal organic framework (MOF), mmen-M2(dobpdc) (M = Mg and Mn), supported on a structured monolith contactor for CO2 capture from simulated flue gas is explored. The stability of the unsupported MOF powders under humid conditions is explored using nitrogen physisorption and X-ray diffraction analysis before and after exposure to humidity. Based on its superior stability to humidity, mmen-Mg2(dobpdc) is selected for further growth on a honeycomb cordierite monolith that is wash-coated with α-alumina. A simple approach for the synthesis of an Mg2(dobpdc) MOF film using MgO nanoparticles as the metal precursor is used. Rapid drying of MgO on the monolith surface followed by a hydrothermal treatment is demonstrated to allow for the synthesis of a MOF film with good crystallite density and favorable orientation of the MOF crystals. The CO2 adsorption behavior of the monolith-supported mmen-Mg2(dobpdc) material is assessed using 10% CO2 in helium and 100% CO2, demonstrating a CO2 uptake of 2.37 and 2.88 mmol/g, respectively. Excellent cyclic adsorption/desorption performance over multiple cycles is also observed. This is one of the first examples of the deployment of an advanced MOF adsorbent in a scalable, low-pressure drop gas-solid contactor. Such demonstrations are critical to the practical application of MOF materials in adsorptive gas separations, as structured contactors have many practical advantages over packed or fluidized beds.

[1]  F. Rezaei,et al.  MOF-74 and UTSA-16 film growth on monolithic structures and their CO2 adsorption performance , 2017 .

[2]  S. Bordiga,et al.  Increasing the stability of Mg2(dobpdc) metal–organic framework in air through solvent removal , 2017 .

[3]  Christopher W. Jones,et al.  Systems Design and Economic Analysis of Direct Air Capture of CO2 through Temperature Vacuum Swing Adsorption Using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF Adsorbents , 2017 .

[4]  Seth M. Cohen,et al.  Metal–organic frameworks for membrane-based separations , 2016 .

[5]  David S. Sholl,et al.  Direct Air Capture of CO2 Using Amine Functionalized MIL-101(Cr) , 2016 .

[6]  Christopher W. Jones,et al.  Direct Capture of CO2 from Ambient Air. , 2016, Chemical reviews.

[7]  Christopher W. Jones,et al.  Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air. , 2016, ChemSusChem.

[8]  David S. Sholl,et al.  CO2 capture via adsorption in amine-functionalized sorbents , 2016 .

[9]  B. Helms,et al.  Minute-MOFs: Ultrafast Synthesis of M2(dobpdc) Metal–Organic Frameworks from Divalent Metal Oxide Colloidal Nanocrystals , 2016 .

[10]  D. Milliron,et al.  Sub-micron Polymer-Zeolitic Imidazolate Framework Layered Hybrids via Controlled Chemical Transformation of Naked ZnO Nanocrystal Films , 2015 .

[11]  Y. Lei,et al.  Functionalization of Metal-Organic Frameworks for Enhanced Stability under Humid Carbon Dioxide Capture Conditions. , 2015, ChemSusChem.

[12]  Kenji Sumida,et al.  Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. , 2015, Journal of the American Chemical Society.

[13]  A. Huang,et al.  Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H-2/CO2 separation , 2015 .

[14]  Jeffrey A. Reimer,et al.  Cooperative insertion of CO2 in diamine-appended metal-organic frameworks , 2015, Nature.

[15]  Hao Liu,et al.  Capturing CO2 from ambient air using a polyethyleneimine–silica adsorbent in fluidized beds , 2014 .

[16]  Hao Lin,et al.  Enhanced selective CO2 adsorption on polyamine/MIL-101(Cr) composites , 2014 .

[17]  Shuhong Yu,et al.  Alkylamine-tethered stable metal-organic framework for CO(2) capture from flue gas. , 2014, ChemSusChem.

[18]  Jitong Wang,et al.  Mesoporous Carbon-Supported Solid Amine Sorbents for Low-Temperature Carbon Dioxide Capture , 2013 .

[19]  Hern Kim,et al.  Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique , 2012 .

[20]  Sascha R.A. Kersten,et al.  Continuous CO2 capture in a circulating fluidized bed using supported amine sorbents , 2012 .

[21]  David S. Sholl,et al.  Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO2 from Air , 2012 .

[22]  Krista S. Walton,et al.  Effect of Water Adsorption on Retention of Structure and Surface Area of Metal–Organic Frameworks , 2012 .

[23]  Christopher W. Jones,et al.  Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases. , 2012, The journal of physical chemistry letters.

[24]  Jeffrey R. Long,et al.  Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). , 2012, Journal of the American Chemical Society.

[25]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[26]  K. Edler,et al.  Size-controlled synthesis of MIL-101(Cr) nanoparticles with enhanced selectivity for CO2 over N2 , 2011 .

[27]  Christopher W. Jones,et al.  Mesoporous Alumina-Supported Amines as Potential Steam-Stable Adsorbents for Capturing CO2 from Simulated Flue Gas and Ambient Air , 2011 .

[28]  Christopher W. Jones,et al.  Amine-oxide hybrid materials for acid gas separations , 2011 .

[29]  A. Matzger,et al.  Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[30]  Christopher W. Jones,et al.  Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. , 2011, Environmental science & technology.

[31]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[32]  F. Kapteijn,et al.  MOFs meet monoliths: Hierarchical structuring metal organic framework catalysts , 2011 .

[33]  R. Fischer,et al.  Dense and homogeneous coatings of CPO-27-M type metal–organic frameworks on alumina substrates , 2010 .

[34]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[35]  Youssef Belmabkhout,et al.  Amine-bearing mesoporous silica for CO2 removal from dry and humid air , 2010 .

[36]  P. Webley,et al.  Comparison of traditional and structured adsorbents for CO2 separation by vacuum-swing adsorption , 2010 .

[37]  Paul A. Webley,et al.  Optimum structured adsorbents for gas separation processes , 2009 .

[38]  H. Furukawa,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[39]  Ryan P. Lively,et al.  Hollow Fiber Adsorbents for CO2 Removal from Flue Gas , 2009 .

[40]  Colin E. Snape,et al.  Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies , 2008 .

[41]  Regina de Fátima Peralta Muniz Moreira,et al.  Adsorption of CO2, CH4, and N2 in Activated Carbon Honeycomb Monolith , 2008 .

[42]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[43]  Krista S. Walton,et al.  Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[44]  F. Kapteijn,et al.  Tuning the morphology of monolith coatings , 2007 .

[45]  Yuan Chun,et al.  CO2 Capture by As‐Prepared SBA‐15 with an Occluded Organic Template , 2006 .

[46]  J. M. Zamaro,et al.  Zeolite washcoating onto cordierite honeycomb reactors for environmental applications , 2005 .

[47]  Olov G. W. Öhrman,et al.  Synthesis and evaluation of ZSM-5 films on cordierite monoliths , 2004 .

[48]  William J. Koros,et al.  High Pressure CO2/CH4 Separation Using Carbon Molecular Sieve Hollow Fiber Membranes , 2002 .

[49]  Freek Kapteijn,et al.  Preparation of monolithic catalysts , 2001 .

[50]  F. Kapteijn,et al.  Monolithic catalysts: non-uniform active phase distribution by impregnation , 2001 .

[51]  Suresh T. Gulati,et al.  The application of monoliths for gas phase catalytic reactions , 2001 .

[52]  D. Vlachos,et al.  Simulations and experiments on the growth and microstructure of zeolite MFI films and membranes made by secondary growth , 2001 .

[53]  M. Mazzotti,et al.  Supporting Information to : On the potential of phase-change adsorbents for CO 2 capture by temperature swing adsorption , 2016 .

[54]  Guowu Zhan,et al.  Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters. , 2016, Chemical communications.

[55]  Xinsheng Peng,et al.  Self–confined synthesis of HKUST‐1 membranes from CuO nanosheets at room temperature , 2016 .