Segmentation of psoriasis vulgaris images using multiresolution-based orthogonal subspace techniques

In this paper, a method is proposed for the segmentation of color images using a multiresolution-based signature subspace classifier (MSSC) with application to psoriasis images. The essential techniques consist of feature extraction and image segmentation (classification) methods. In this approach, the fuzzy texture spectrum and the two-dimensional fuzzy color histogram in the hue-saturation space are first adopted as the feature vector to locate homogeneous regions in the image. Then these regions are used to compute the signature matrices for the orthogonal subspace classifier to obtain a more accurate segmentation. To reduce the computational requirement, the MSSC has been developed. In the experiments, the method is quantitatively evaluated by using a similarity function and compared with the well-known LS-SVM method. The results show that the proposed algorithm can effectively segment psoriasis images. The proposed approach can also be applied to general color texture segmentation applications.

[1]  Mark L. G. Althouse,et al.  Least squares subspace projection approach to mixed pixel classification for hyperspectral images , 1998, IEEE Trans. Geosci. Remote. Sens..

[2]  K. Johana,et al.  Benchmarking Least Squares Support Vector Machine Classifiers , 2022 .

[3]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[4]  Chein-I Chang,et al.  A posteriori least squares orthogonal subspace projection approach to desired signature extraction and detection , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[6]  Sang Uk Lee,et al.  On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques , 1990, Pattern Recognit..

[7]  Kai-Kuang Ma,et al.  Fuzzy color histogram and its use in color image retrieval , 2002, IEEE Trans. Image Process..

[8]  Josef Kittler,et al.  A Performance Measure for Boundary Detection Algorithms , 1996, Comput. Vis. Image Underst..

[9]  Anil K. Jain,et al.  Object localization using color, texture and shape , 2000, Pattern Recognit..

[10]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[11]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Bernhard Schölkopf,et al.  Sparse Greedy Matrix Approximation for Machine Learning , 2000, International Conference on Machine Learning.

[13]  Josef Kittler,et al.  Region growing: a new approach , 1998, IEEE Trans. Image Process..

[14]  C W Yang,et al.  Orthogonal subspace projection-based approaches to classification of MR image sequences. , 2001, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[15]  Jin-Shiuh Taur Neuro-Fuzzy Approach to the Segmentation of Psoriasis Images , 2003, J. VLSI Signal Process..

[16]  Maria Petrou,et al.  Histogram ratio features for color texture classification , 2003, Pattern Recognit. Lett..

[17]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[18]  Rudolf Kruse,et al.  Generating classification rules with the neuro-fuzzy system NEFCLASS , 1996, Proceedings of North American Fuzzy Information Processing.

[19]  Sun-Yuan Kung,et al.  Decision-based neural networks with signal/image classification applications , 1995, IEEE Trans. Neural Networks.

[20]  Xiaobo Li,et al.  Adaptive image region-growing , 1994, IEEE Trans. Image Process..

[21]  Jake K. Aggarwal,et al.  The Integration of Image Segmentation Maps using Region and Edge Information , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Linda G. Shapiro,et al.  Image Segmentation Techniques , 1984, Other Conferences.

[23]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[24]  Johan A. K. Suykens,et al.  Bayesian Framework for Least-Squares Support Vector Machine Classifiers, Gaussian Processes, and Kernel Fisher Discriminant Analysis , 2002, Neural Computation.

[25]  Chin-Wang Tao,et al.  Texture classification using a fuzzy texture spectrum and neural networks , 1998, J. Electronic Imaging.

[26]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[27]  Theodosios Pavlidis,et al.  Integrating Region Growing and Edge Detection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Josef Kittler,et al.  Histogram-based segmentation in a perceptually uniform color space , 1998, IEEE Trans. Image Process..

[29]  Shigeo Abe,et al.  A fuzzy classifier with ellipsoidal regions , 1997, IEEE Trans. Fuzzy Syst..

[30]  Jianping Fan,et al.  Automatic image segmentation by integrating color-edge extraction and seeded region growing , 2001, IEEE Trans. Image Process..

[31]  Johan A. K. Suykens,et al.  LS-SVMlab Toolbox User's Guide version 1.7 , 2003 .

[32]  John F. Haddon,et al.  Image Segmentation by Unifying Region and Boundary Information , 1990, IEEE Trans. Pattern Anal. Mach. Intell..