Probing ab initio emergence of nuclear rotation

Structural phenomena in nuclei, from shell structure and clustering to superfluidity and collective rotations and vibrations, reflect emergent degrees of freedom. Ab initio theory describes nuclei directly from a fully microscopic formulation. We can therefore look to ab initio theory as a means of exploring the emergence of effective degrees of freedom in nuclei. For the illustrative case of emergent rotational bands in the Be isotopes, we establish an understanding of the underlying oscillator space and angular momentum (orbital and spin) structure. We consider no-core configuration interaction (NCCI) calculations for 7,9,11Be with the Daejeon16 internucleon interaction. Although shell model or rotational degrees of freedom are not assumed in the ab initio theory, the NCCI results are suggestive of the emergence of effective shell model degrees of freedom (0 hbar-omega and 2 hbar-omega excitations) and LS-scheme rotational degrees of freedom, consistent with an Elliott-Wilsdon SU(3) description. These results provide some basic insight into the connection between emergent effective collective rotational and shell model degrees of freedom in these light nuclei and the underlying ab initio microscopic description.

[1]  M. Kimura,et al.  Antisymmetrized molecular dynamics and its applications to cluster phenomena , 2012, 1202.1864.

[2]  M. Harvey,et al.  Collective motion in the nuclear shell model III. The calculation of spectra , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Tomás Dytrych,et al.  Evidence for symplectic symmetry in Ab initio no-core shell model results for light nuclei. , 2007, Physical review letters.

[4]  T. Massey,et al.  Band structures in light neutron-rich nuclei , 2008 .

[5]  T. Papenbrock Effective theory for deformed nuclei , 2010, 1011.5026.

[6]  J. Elliott,et al.  Collective motion in the nuclear shell model IV. Odd-mass nuclei in the sd shell , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  David J Rowe,et al.  Microscopic theory of the nuclear collective model , 1985 .

[8]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[9]  E. Dudas,et al.  Issues on tadpoles and vacuum redefinitions in String Theory , 2004, hep-th/0410101.

[10]  H. Hergert In-medium similarity renormalization group for closed and open-shell nuclei , 2016, 1607.06882.

[11]  Petr Navrátil,et al.  Ab initio no core shell model , 2013 .

[12]  D. R. Tilley,et al.  Energy levels of light nuclei A=8,9,10 , 2004 .

[13]  S. Bogner,et al.  In-medium similarity renormalization group for nuclei. , 2010, Physical review letters.

[14]  B. Back,et al.  Experimental study of the low-lying negative-parity states in Be11 using the B12(d,He3)Be11 reaction , 2019 .

[15]  P. Navrátil,et al.  Large basis ab initio shell model investigation of 9Be and 11Be , 2004, nucl-th/0412049.

[16]  Jerry P. Draayer,et al.  Dominant role of symplectic symmetry in ab initio no-core shell model results for light nuclei , 2007 .

[17]  J. Vary,et al.  Converging sequences in the ab initio no-core shell model , 2008, 0802.1611.

[18]  S. Quaglioni,et al.  Be7 and Li7 nuclei within the no-core shell model with continuum , 2019, Physical Review C.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  R. Whitehead Moment Methods and Lanczos Methods , 1980 .

[21]  R. Furnstahl Turning the nuclear energy density functional method into a proper effective field theory: reflections , 2019, The European Physical Journal A.

[22]  D. Kurath INTERMEDIATE COUPLING IN THE 1p-SHELL , 1956 .

[23]  Structure of unstable light nuclei , 2001, nucl-th/0103007.

[24]  A. Arima Interacting boson model , 1981 .

[25]  J. Suhonen From Nucleons to Nucleus , 2007 .

[26]  D. Rowe,et al.  An effective shell-model theory of collective states , 1986 .

[27]  N. Stone Table of Nuclear Electric Quadrupole Moments , 2016 .

[28]  T.Neff,et al.  Cluster structures within Fermionic Molecular Dynamics , 2003, nucl-th/0312130.

[29]  David J Rowe,et al.  Nuclear Sp(3,R) model , 1977 .

[30]  D. Rowe,et al.  The many-nucleon theory of nuclear collective structure and its macroscopic limits: an algebraic perspective , 2016, 1703.04640.

[31]  M. A. Caprio,et al.  Emergence of rotational bands in ab initio no-core configuration interaction calculations , 2014, 1409.0881.

[32]  W. Oertzen Dimers based on the α + α potential and chain states of carbon isotopes , 1997 .

[33]  D. Rowe,et al.  A coupled rotor-vibrator model as the macroscopic limit of the microscopic symplectic model , 1984 .

[34]  T. Yoshida,et al.  Intrinsic Structure of Light Nuclei in Monte Carlo Shell Model Calculation , 2013 .

[35]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[36]  D. R. Tilley,et al.  Energy Levels of Light Nuclei A = 19 , 1995 .

[37]  Ümit V. Çatalyürek,et al.  Collective modes in light nuclei from first principles. , 2013, Physical review letters.

[38]  K. Wendt,et al.  Infrared extrapolations for atomic nuclei , 2014, 1408.0252.

[39]  R. G. Pillay,et al.  Electromagnetic transition from the 4+ to 2+ resonance in 8Be measured via the radiative capture in 4He + 4He. , 2013, Physical review letters.

[40]  Sofia Quaglioni,et al.  Unified ab initio approaches to nuclear structure and reactions , 2016, 1601.03765.

[41]  J. Draayer,et al.  Symmetry-guided large-scale shell-model theory , 2016, 1612.04298.

[42]  T. Neff,et al.  Cluster structures within Fermionic Molecular Dynamics , 2004 .

[43]  P. Maris Ab Initio Nuclear Structure Calculations of Light Nuclei , 2012, 1209.6573.

[44]  Masha Sosonkina,et al.  Scaling of ab-initio nuclear physics calculations on multicore computer architectures , 2010, ICCS.

[45]  I. Talmi,et al.  Simple Models of Complex Nuclei: The Shell Model and Interacting Boson Model , 1994 .

[46]  J. Vary,et al.  Collective rotation from ab initio theory , 2015, 1509.00102.

[47]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[48]  K. Hecht,et al.  Symplectic and cluster excitations in nuclei:: Evaluation of interaction matrix elements , 1986 .

[49]  P. O’Malley,et al.  First measurement of the B(E2;3/2−→1/2− ) transition strength in Be7 : Testing abinitio predictions for A=7 nuclei , 2019, Physical Review C.

[50]  K. Kravvaris,et al.  Study of Nuclear Clustering from an Ab Initio Perspective. , 2017, Physical review letters.

[51]  D. R. Entem,et al.  Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory , 2003 .

[52]  Chao Yang,et al.  Improving the scalability of a symmetric iterative eigensolver for multi‐core platforms , 2014, Concurr. Comput. Pract. Exp..

[53]  Steven C. Pieper,et al.  Quantum Monte Carlo calculations of excited states in A =6-8 nuclei , 2004 .

[54]  David J Rowe,et al.  On the algebraic formulation of collective models III. The symplectic shell model of collective motion , 1980 .

[55]  M. Gell-Mann Symmetries of baryons and mesons , 1962 .

[56]  K. Kravvaris,et al.  Study of clustering in isotopes of beryllium , 2018 .

[57]  Chao Yang,et al.  Accelerating nuclear configuration interaction calculations through a preconditioned block iterative eigensolver , 2016, Comput. Phys. Commun..

[58]  J. Wood,et al.  Fundamentals Of Nuclear Models: Foundational Models , 2010 .

[59]  I. Talmi,et al.  ORDER OF LEVELS IN THE SHELL MODEL AND SPIN OF Be$sup 1$$sup 1$ , 1960 .

[60]  R. Furnstahl,et al.  Systematic expansion for infrared oscillator basis extrapolations , 2013, 1312.6876.

[61]  S. Quaglioni,et al.  How Many-Body Correlations and α Clustering Shape ^{6}He. , 2016, Physical review letters.

[62]  D. Rowe,et al.  Nuclear Collective Motion: Models and Theory , 2010 .

[63]  B. G. Wybourne,et al.  Classical Groups for Physicists , 1974 .

[64]  W. Haxton,et al.  Piecewise moments method: Generalized Lanczos technique for nuclear response surfaces , 2005, nucl-th/0508034.

[65]  Symmetry-adapted no-core shell model applications for light nuclei with QCD-inspired interactions , 2012 .

[66]  M. Sosonkina,et al.  N3LO NN interaction adjusted to light nuclei in ab exitu approach , 2016, 1605.00413.

[67]  S. Quaglioni,et al.  Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in ^{11}Be? , 2016, Physical review letters.

[68]  D. R. Inglis The Energy Levels and the Structure of Light Nuclei , 1953 .

[69]  F. Ajzenberg-Selove,et al.  Energy Levels of Light Nuclei A = 9 , 1984 .

[70]  E. Henley,et al.  INELASTIC SCATTERING FROM LIGHT NUCLEI-THE ALPHA-PARTICLE MODEL FOR Be$sup 9$ , 1958 .

[71]  A. Arima,et al.  The Interacting Boson Model: The interacting boson model-2 , 1987 .

[72]  A. Barut,et al.  Theory of group representations and applications , 1977 .

[73]  J. Vary,et al.  Ab initio no-core full configuration calculations of light nuclei , 2008, 0808.3420.

[74]  A. I. Mazur,et al.  Realistic Nuclear Hamiltonian: Ab exitu approach , 2005, nucl-th/0512105.

[75]  P. Veselý,et al.  Ground-state correlations within a nonperturbative approach , 2017 .

[76]  Pieter Maris,et al.  Convergence properties of ab initio calculations of light nuclei in a harmonic oscillator basis , 2012, 1205.3230.

[77]  J. P. Elliott,et al.  Collective motion in the nuclear shell model II. The introduction of intrinsic wave-functions , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[78]  Frank Wannemaker,et al.  Nuclear Structure From A Simple Perspective , 2016 .

[79]  G. Hagen,et al.  Open $sd$-shell nuclei from first principles , 2015, 1511.00757.

[80]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[81]  R. J. Perry,et al.  Convergence in the no-core shell model with low-momentum two-nucleon interactions , 2007, 0708.3754.

[82]  J. P. Elliott,et al.  Collective motion in the nuclear shell model. I. Classification schemes for states of mixed configurations , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[83]  S. Bogner,et al.  Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians , 2015, 1511.02802.

[84]  J. Draayer,et al.  SU(3) symmetry breaking in lower fp-shell nuclei , 2000, nucl-th/0009014.

[85]  P. Kunz Decay of BERYLLIUM-9* (2.43 - Mev State) and AN Alpha-Particle Model for Some Light Nuclei. , 1960 .

[86]  C. Johnson Spin-orbit decomposition of ab initio nuclear wavefunctions , 2014, 1409.7355.

[87]  J. Vary,et al.  Emergence of rotational bands in ab initio no-core configuration interaction calculations of light nuclei , 2013, 1301.0956.