The theory of block generalized locally Toeplitz sequences

The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic singular value and eigenvalue distribution of matrices An arising from virtually any kind of numerical discretization of differential equations (DEs). Indeed, when the discretization parameter n tends to infinity, these matrices An give rise to a sequence {An}n, which often turns out to be a GLT sequence or one of its ‘relatives’, i.e., a block GLT sequence or a reduced GLT sequence. In particular, block GLT sequences are encountered in the discretization of systems of DEs as well as in the higher-order finite element or discontinuous Galerkin approximation of scalar DEs. Despite the applicative interest, a solid theory of block GLT sequences is still missing. The purpose of the present paper is to develop this theory in a systematic way.

[1]  Beatrice Meini,et al.  Numerical methods for structured Markov chains , 2005 .

[2]  R. Dervan,et al.  A finite dimensional approach to Donaldson’s J‑flow , 2015, Communications in Analysis and Geometry.

[3]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[4]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[5]  Stefano Serra Capizzano,et al.  Spectral analysis and structure preserving preconditioners for fractional diffusion equations , 2016, J. Comput. Phys..

[6]  Bruno Iannazzo,et al.  Numerical Solution of Algebraic Riccati Equations , 2012, Fundamentals of algorithms.

[7]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[8]  Stefano Serra-Capizzano More Inequalities and Asymptotics for Matrix Valued Linear Positive Operators: the Noncommutative Case , 2002 .

[9]  A. Doroshenko,et al.  Spectral properties and applications of the new 7H-benzo[de]pyrazolo[5, 1-a]isoquinolin-7-ones , 2003 .

[10]  Daniele Bertaccini,et al.  Optimizing a multigrid Runge–Kutta smoother for variable-coefficient convection–diffusion equations , 2017 .

[11]  F. Avram On bilinear forms in Gaussian random variables and Toeplitz matrices , 1988 .

[12]  Stefano Serra Capizzano,et al.  Function-based block multigrid strategy for a two-dimensional linear elasticity-type problem , 2017, Comput. Math. Appl..

[13]  Stefano Serra Capizzano,et al.  On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..

[14]  S. Serra Capizzano,et al.  Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach , 2001 .

[15]  Stefano Serra Capizzano,et al.  Symbol approach in a signal-restoration problem involving block Toeplitz matrices , 2014, J. Comput. Appl. Math..

[16]  Paolo Tilli,et al.  On unitarily invariant norms of matrix-valued linear positive operators , 2002 .

[17]  Milutin R. Dostanić,et al.  On the distribution singular values of Toeplitz matrices , 2001 .

[18]  Albrecht Böttcher,et al.  Spectral properties of banded Toeplitz matrices , 1987 .

[19]  Stefano Serra Capizzano,et al.  Preconditioned HSS method for large multilevel block Toeplitz linear systems via the notion of matrix‐valued symbol , 2016, Numer. Linear Algebra Appl..

[20]  Walter Van Assche,et al.  Zero distribution of orthogonal polynomials with asymptotically periodic varying recurrence coefficients , 1999 .

[21]  Bernd Silbermann,et al.  Analysis of Toeplitz Operators , 1991 .

[22]  Eugene E. Tyrtyshnikov,et al.  Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .

[23]  Hendrik Speleers,et al.  Lusin theorem, GLT sequences and matrix computations: An application to the spectral analysis of PDE discretization matrices , 2017 .

[24]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[25]  A. Böttcher,et al.  Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis , 2000 .

[26]  Giovanni Barbarino,et al.  Equivalence between GLT sequences and measurable functions , 2017, 1703.10414.

[27]  Carlo Garoni,et al.  A general tool for determining the asymptotic spectral distribution of Hermitian matrix-sequences , 2015 .

[28]  Hendrik Speleers,et al.  Spectral analysis and spectral symbol of matrices in isogeometric collocation methods , 2015, Math. Comput..

[29]  Rolf Krause,et al.  DISCONTINUOUS GALERKIN DISCRETIZATION OF THE HEAT EQUATION IN ANY DIMENSION : THE SPECTRAL SYMBOL , 2018 .

[30]  Carlo Garoni,et al.  Exploration of Toeplitz-like matrices with unbounded symbols is not a purely academic journey , 2017 .

[31]  Carlo Garoni Spectral distribution of PDE discretization matrices from isogeometric analysis: the case of $L^1$ coefficients and non-regular geometry , 2018 .

[32]  Hendrik Speleers,et al.  Spectral analysis of matrices in Galerkin methods based on generalized B-splines with high smoothness , 2017, Numerische Mathematik.

[33]  D. Fasino,et al.  From Toeplitz matrix sequences to zero distribution of orthogonal polynomials , 2001 .

[34]  Hendrik Speleers,et al.  Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods , 2017, Math. Comput..

[35]  Eugene E. Tyrtyshnikov,et al.  Distribution of eigenvalues and singular values of Toeplitz matrices under weakened conditions on the generating function , 1997 .

[36]  Carlo Garoni,et al.  Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I , 2017 .

[37]  Carlo Garoni,et al.  Spectral Analysis and Spectral Symbol of d-variate $\mathbb Q_{\boldsymbol p}$ Lagrangian FEM Stiffness Matrices , 2015, SIAM J. Matrix Anal. Appl..

[38]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[39]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[40]  Paolo Tilli,et al.  Locally Toeplitz sequences: spectral properties and applications , 1998 .

[41]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[42]  Stefano Serra-Capizzano,et al.  Eigenvalue-eigenvector structure of Schoenmakers–Coffey matrices via Toeplitz technology and applications , 2016 .

[43]  Stefano Serra Capizzano,et al.  Spectral behavior of preconditioned non-Hermitian multilevel block Toeplitz matrices with matrix-valued symbol , 2014, Appl. Math. Comput..

[44]  Michael Dumbser,et al.  Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations: Spectral analysis and computational results , 2016, Numer. Linear Algebra Appl..

[45]  Stefano Serra Capizzano,et al.  Singular‐value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators , 2014, Numer. Linear Algebra Appl..