High Speed Electro-Absorption Modulator for Long Range Retroreflective Free Space Optics

In this letter, we present the design and implementation of a pixelated electro-absorption modulator-based modulating retroreflector (MRR) for high-speed optical wireless communications. The modulator is based on a multiple quantum well structure embedded in an asymmetric Fabry–Perot cavity. This MRR was used in an outdoor link, operating at 150 Mb/s with a bit error rate (BER) of <inline-formula> <tex-math notation="LaTeX">$1.22\times 10^{-6}$ </tex-math></inline-formula> at a range of 200 m. The system was also tested in laboratory-controlled conditions achieving a data rate of 200 Mb/s with a BER of <inline-formula> <tex-math notation="LaTeX">$2\times 10^{-4}$ </tex-math></inline-formula>. To the best of our knowledge, this is the fastest retroreflective free-space optics demonstration in both the indoor and outdoor environments.

[1]  D. M. Boroson,et al.  The Lunar Laser Communications Demonstration (LLCD) , 2009, 2009 Third IEEE International Conference on Space Mission Challenges for Information Technology.

[2]  Dominic C. O'Brien,et al.  Design and implementation of optical wireless communications with optically powered smart dust motes , 2009, IEEE Journal on Selected Areas in Communications.

[3]  C Quintana,et al.  Design of a holographic tracking module for long-range retroreflector free-space systems. , 2016, Applied optics.

[4]  Georges Kaddoum,et al.  Optical Communication in Space: Challenges and Mitigation Techniques , 2017, IEEE Communications Surveys & Tutorials.

[5]  William H. Farr,et al.  Limits on achievable dimensional and photon efficiencies with intensity-modulation and photon-counting due to non-ideal photon-counter behavior , 2012, Other Conferences.

[6]  Michael J. Vilcheck,et al.  Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles , 2001 .

[7]  William S. Rabinovich,et al.  Underwater optical modulating retro-reflector links , 2010 .

[8]  David O. Caplan,et al.  Compact optical transmitters for CubeSat free-space optical communications , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[9]  Wolfgang Riede,et al.  The C3PO project: a laser communication system concept for small satellites , 2017, LASE.

[10]  G. C. Gilbreath,et al.  45-Mbit/s cat’s-eye modulating retroreflectors , 2007 .

[11]  Rita Mahon,et al.  Performance of cat's eye modulating retro-reflectors for free-space optical communications , 2004, SPIE Optics + Photonics.

[12]  Jian Guo,et al.  Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology , 2010 .

[13]  J. Puig-Suari,et al.  Development of the standard CubeSat deployer and a CubeSat class PicoSatellite , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[14]  Janise McNair,et al.  A Survey of Communication Sub-systems for Intersatellite Linked Systems and CubeSat Missions , 2012, J. Commun..

[15]  Daniel Agren,et al.  1550 nm transmissive/reflective surface-normal electroabsorption modulator arrays , 2006 .

[16]  Takashi Mizuochi,et al.  Forward error correction for 100 G transport networks , 2010, IEEE Communications Magazine.