Xenon isotopes in Archean and Proterozoic insoluble organic matter: A robust indicator of syngenecity?

[1]  A. Golani The Stratigraphy , 2019, Ashqelon Barne‘a. The Early Bronze Age Site I.

[2]  B. Marty,et al.  Geochemical evidence for high volatile fluxes from the mantle at the end of the Archaean , 2019, Nature.

[3]  M. Moreira,et al.  Onset of volatile recycling into the mantle determined by xenon anomalies , 2018, Geochemical Perspectives Letters.

[4]  K. Zahnle,et al.  Strange messenger: A new history of hydrogen on Earth, as told by Xenon , 2018, Geochimica et Cosmochimica Acta.

[5]  S. Derenne,et al.  What is the meaning of hydrogen-to-carbon ratio determined in Archean organic matter? , 2018, Organic Geochemistry.

[6]  F. Robert,et al.  Chemical nature of the 3.4 Ga Strelley Pool microfossils , 2018, Geochemical Perspectives Letters.

[7]  S. Mukhopadhyay,et al.  Xenon isotopic constraints on the history of volatile recycling into the mantle , 2018, Nature.

[8]  A. Hofmann,et al.  Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks , 2018, Geochimica et Cosmochimica Acta.

[9]  C. N. Sutcliffe,et al.  Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases , 2018 .

[10]  B. Marty,et al.  Archean kerogen as a new tracer of atmospheric evolution: Implications for dating the widespread nature of early life , 2018, Science Advances.

[11]  M. Koike,et al.  Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada , 2017, Nature.

[12]  H. Balsiger,et al.  Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere , 2017, Science.

[13]  B. Marty,et al.  The origin and degassing history of the Earth's atmosphere revealed by Archean xenon , 2017, Nature Communications.

[14]  R. Thunell,et al.  Rapid organic matter sulfurization in sinking particles from the Cariaco Basin water column , 2016 .

[15]  A. Templeton,et al.  Self-assembly of biomorphic carbon/sulfur microstructures in sulfidic environments , 2016, Nature Communications.

[16]  J. Rouzaud,et al.  The Raman-Derived Carbonization Continuum: A Tool to Select the Best Preserved Molecular Structures in Archean Kerogens , 2016, Astrobiology.

[17]  T. M. Harrison,et al.  Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon , 2015, Proceedings of the National Academy of Sciences.

[18]  B. Marty,et al.  Synthesis of refractory organic matter in the ionized gas phase of the solar nebula , 2015, Proceedings of the National Academy of Sciences.

[19]  Yosuke Hoshino,et al.  Reappraisal of hydrocarbon biomarkers in Archean rocks , 2015, Proceedings of the National Academy of Sciences.

[20]  W. Fischer,et al.  Neoarchean carbonate–associated sulfate records positive Δ33S anomalies , 2014, Science.

[21]  Sherry L. Cady,et al.  Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life , 2014 .

[22]  B. Marty,et al.  Experimental determination of the xenon isotopic fractionation during adsorption , 2013 .

[23]  K. Williford,et al.  Texture-specific isotopic compositions in 3.4 Gyr old organic matter support selective preservation in cell-like structures , 2013 .

[24]  D. Oehler,et al.  Carbon isotopic analyses of ca. 3.0 Ga microstructures imply planktonic autotrophs inhabited Earth’s early oceans , 2013 .

[25]  A. Sessions,et al.  MC-ICP-MS measurement of δ34S and ∆33S in small amounts of dissolved sulfate , 2013 .

[26]  K. Lepot,et al.  Microfossil assemblage from the 3400Ma Strelley Pool Formation in the Pilbara Craton, Western Australia: Results form a new locality , 2013 .

[27]  J. Rouzaud,et al.  Electron Paramagnetic Resonance Study of a Photosynthetic Microbial Mat and Comparison with Archean Cherts , 2012, Origins of Life and Evolution of Biospheres.

[28]  J. Grotzinger,et al.  Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism , 2012, Proceedings of the National Academy of Sciences.

[29]  C. Marshall,et al.  Multiple generations of carbon in the apex chert and implications for preservation of microfossils. , 2012, Astrobiology.

[30]  David Wacey,et al.  Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia , 2011 .

[31]  B. Marty,et al.  Chondritic-like xenon trapped in Archean rocks: A possible signature of the ancient atmosphere , 2011 .

[32]  M. Walter,et al.  Trace elements record depositional history of an Early Archean stromatolitic carbonate platform , 2010 .

[33]  K. Sugitani,et al.  A systematic rare-earth elements and yttrium study of Archean cherts at the Mount Goldsworthy greenstone belt in the Pilbara Craton: Implications for the origin of microfossil-bearing black cherts , 2010 .

[34]  M. Walter,et al.  Taxonomy and biogenicity of Archaean spheroidal microfossils (ca. 3.0 Ga) from the Mount Goldsworthy-Mount Grant area in the northeastern Pilbara Craton, Western Australia , 2009 .

[35]  P. Philippot,et al.  Garnet‐filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt , 2009, Geobiology.

[36]  Yumiko Watanabe,et al.  Anomalous Fractionations of Sulfur Isotopes During Thermochemical Sulfate Reduction , 2009, Science.

[37]  A. J. Kaufman,et al.  Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics , 2009 .

[38]  J. Rouzaud,et al.  Molecular evidence for life in the 3.5 billion year old Warrawoona chert , 2008 .

[39]  J. Lyons Mass‐independent fractionation of sulfur isotopes by isotope‐selective photodissociation of SO2 , 2007 .

[40]  C. Marshall,et al.  Diverse microstructures from Archaean chert from the Mount Goldsworthy–Mount Grant area, Pilbara Craton, Western Australia: Microfossils, dubiofossils, or pseudofossils? , 2007 .

[41]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[42]  J. Schopf,et al.  Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, west Greenland , 2007 .

[43]  J. Severinghaus,et al.  A redetermination of the isotopic abundances of atmospheric Ar , 2006 .

[44]  Abigail C. Allwood,et al.  Stromatolite reef from the Early Archaean era of Australia , 2006, Nature.

[45]  T. Sharp,et al.  The structure and distribution of carbon in 3.5 Ga Apex chert: Implications for the biogenicity of Earth`s oldest putative microfossils , 2006 .

[46]  J. Horita Some perspectives on isotope biosignatures for early life , 2005 .

[47]  A. Brearley,et al.  The onset of metamorphism in ordinary and carbonaceous chondrites , 2005 .

[48]  B. Kennedy,et al.  Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks , 2004 .

[49]  M. V. Kranendonk,et al.  Self-Assembled Silica-Carbonate Structures and Detection of Ancient Microfossils , 2003, Science.

[50]  R. C. Morris,et al.  Could bacteria have formed the Precambrian banded iron formations , 2002 .

[51]  S. Kelley Excess argon in K–Ar and Ar–Ar geochronology , 2002 .

[52]  Aivo Lepland,et al.  Reassessing the evidence for the earliest traces of life , 2002, Nature.

[53]  J. Ward,et al.  Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs , 2002, Nature.

[54]  S. Wilde,et al.  Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18 O continental crust and oceans in the Early Archean , 2001 .

[55]  B. Kamber,et al.  The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history , 2001 .

[56]  J. Spangenberg,et al.  Basin-internal derivation of hydrocarbons in the Witwatersrand Basin, South Africa: evidence from bulk and molecular δ13C data , 2001 .

[57]  J. Yates,et al.  Molecular simulation of xenon adsorption on single-walled carbon nanotubes , 2001 .

[58]  D. Gerneke,et al.  Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa , 2001 .

[59]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[60]  S. Derenne,et al.  Origin and formation pathways of kerogen-like organic matter in recent sediments off the Danube delta (northwestern Black Sea) , 2000 .

[61]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[62]  R. Smalley,et al.  Physical adsorption of xenon in open single walled carbon nanotubes: Observation of a quasi-one-dimensional confined Xe phase , 2000 .

[63]  M. Rosing,et al.  13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west greenland , 1999, Science.

[64]  S. Bowring,et al.  Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada , 1999 .

[65]  S. Derenne,et al.  Sulphur-rich organic matter from bituminous laminites of Orbagnoux (France, upper Kimmeridgian); the role of early vulcanization , 1997 .

[66]  K. D. McKeegan,et al.  Evidence for life on Earth before 3,800 million years ago , 1996, Nature.

[67]  M. Saunders,et al.  Noble Gas Atoms Inside Fullerenes , 1996, Science.

[68]  S. Derenne,et al.  Electron microscopy and pyrolysis of kerogens from the Kimmeridge Clay Formation, UK: Source organisms, preservation processes, and origin of microcycles , 1995 .

[69]  M. Thiemens,et al.  Isotopic composition and concentration of sulfur in carbonaceous chondrites , 1993 .

[70]  M. Thiemens,et al.  Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites , 1993 .

[71]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[72]  R. Armstrong,et al.  The stratigraphy of the 3.5-3.2 Ga Barberton Greenstone Belt revisited: A single zircon ion microprobe study , 1990 .

[73]  J. Wacker Laboratory simulation of meteoritic noble gases. III. Sorption of neon, argon, krypton, and xenon on carbon: Elemental fractionation , 1989 .

[74]  Marjan Zadnik,et al.  Laboratory simulation of meteoritic noble gases. I - Sorption of xenon on carbon: Trapping experiments , 1985 .

[75]  Frank A. Podosek,et al.  Noble Gas Geochemistry: Noble Gases in the Earth , 1984 .

[76]  E. Anders,et al.  Sorption of noble gases by solids, with reference to meteorites. I. Magnetite and carbon , 1982 .

[77]  M. Walter,et al.  Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia , 1980, Nature.

[78]  E. Hébrard,et al.  Coupled noble gas–hydrocarbon evolution of the early Earth atmosphere upon solar UV irradiation , 2014 .

[79]  T. Lingham‐Soliar,et al.  Origin and evolution , 2014 .

[80]  Aivo Lepland,et al.  Questioning the evidence for Earth's earliest life—Akilia revisited , 2005 .

[81]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.

[82]  R. Wieler,et al.  An Overview of Noble Gas Geochemistry and Cosmochemistry , 2002 .

[83]  J. Damsté,et al.  Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere : state of the art and future research , 1990 .