Horizontal Transfer of Archaeal Genes into the Deinococcaceae: Detection by Molecular and Computer-Based Approaches

[1]  W. Doolittle,et al.  The nature of the universal ancestor and the evolution of the proteome. , 2000, Current opinion in structural biology.

[2]  S. Salzberg,et al.  Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. , 1999, Science.

[3]  P. Forterre,et al.  The Rooting of the Universal Tree of Life Is Not Reliable , 1999, Journal of Molecular Evolution.

[4]  E V Koonin,et al.  Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. , 1999, Genome research.

[5]  D. Söll,et al.  Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma. , 1999, Genetics.

[6]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[7]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[8]  Ronald W. Davis,et al.  Comparative genomes of Chlamydia pneumoniae and C. trachomatis , 1999, Nature Genetics.

[9]  J. Gogarten,et al.  Gene Transfer in Early Evolution , 1999 .

[10]  J. Logsdon,et al.  Thermotoga heats up lateral gene transfer. , 1999, Current biology : CB.

[11]  L. Orgel,et al.  Phylogenetic Classification and the Universal Tree , 1999 .

[12]  James R. Cole,et al.  A new version of the RDP (Ribosomal Database Project) , 1999, Nucleic Acids Res..

[13]  R. Doolittle,et al.  Evolutionary anomalies among the aminoacyl-tRNA synthetases. , 1998, Current opinion in genetics & development.

[14]  R. W. Davis,et al.  Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. , 1998, Science.

[15]  K. Novak The complete genome sequence… , 1998, Nature Medicine.

[16]  S. Salzberg,et al.  Complete genome sequence of Treponema pallidum, the syphilis spirochete. , 1998, Science.

[17]  G. B. Golding,et al.  The mosaic nature of the eukaryotic nucleus. , 1998, Molecular biology and evolution.

[18]  K. Musier-Forsyth,et al.  Species-specific differences in the operational RNA code for aminoacylation of tRNAPro. , 1998, Biochemistry.

[19]  R. Huber,et al.  The complete genome of the hyperthermophilic bacterium Aquifex aeolicus , 1998, Nature.

[20]  O Sigurdsson,et al.  F-and V-ATPases in the genus Thermus and related species. , 1998, Systematic and applied microbiology.

[21]  A. Goffeau,et al.  Yeast genome , 1995 .

[22]  M. Yohda,et al.  F0F1-ATPase genes from an archaebacterium, Methanosarcina barkeri. , 1997, Biochemical and biophysical research communications.

[23]  S. Salzberg,et al.  Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi , 1997, Nature.

[24]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[25]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[26]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[27]  Michael Y. Galperin,et al.  Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea , 1997, Molecular microbiology.

[28]  André Goffeau,et al.  The yeast genome directory. , 1997, Nature.

[29]  W. Konings,et al.  An Na+-pumping V1V0-ATPase complex in the thermophilic bacterium Clostridium fervidus , 1997, Journal of bacteriology.

[30]  Manolo Gouy,et al.  SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny , 1996, Comput. Appl. Biosci..

[31]  K. Strimmer,et al.  Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies , 1996 .

[32]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[33]  E. J. Bowman,et al.  Mitochondrial and Vacuolar ATPases , 1996 .

[34]  R. Sharp,et al.  The Taxonomy and Identification of Thermus , 1995 .

[35]  I. Yamato,et al.  Sequencing and characterization of the ntp gene cluster for vacuolar-type Na(+)-translocating ATPase of Enterococcus hirae. , 1994, The Journal of biological chemistry.

[36]  J. Gogarten,et al.  A conserved intron in the V‐ATPase A subunit genes of plants and algae , 1993, FEBS letters.

[37]  J. Gogarten,et al.  Horizontal transfer of ATPase genes--the tree of life becomes a net of life. , 1993, Bio Systems.

[38]  Masasuke Yoshida,et al.  A DNA fragment homologous to F1‐ATPase β subunit was amplified from genomic DNA of Methanosarcina barkeri Indication of an archaebacterial F‐type ATPase , 1992, FEBS letters.

[39]  J. Gogarten,et al.  Evolution and isoforms of V-ATPase subunits. , 1992, The Journal of experimental biology.

[40]  P. Forterre,et al.  The nature of the last universal ancestor and the root of the tree of life, still open questions. , 1992, Bio Systems.

[41]  K. Yokoyama,et al.  Molecular cloning of genes encoding major two subunits of a eubacterial V-type ATPase from Thermus thermophilus. , 1991, Biochimica et biophysica acta.

[42]  K. Yokoyama,et al.  Thermus thermophilus membrane-associated ATPase. Indication of a eubacterial V-type ATPase. , 1990, The Journal of biological chemistry.

[43]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[45]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[46]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[47]  O. Kandler,et al.  Chemotaxonomic and Molecular-Genetic Studies of the Genus Thermus: Evidence for a Phylogenetic Relationship of Thermus aquaticus and Thermus ruber to the Genus Deinococcus , 1986 .