Chaotic synchronization between different fractional-order chaotic systems

Abstract Based on the idea of tracking control and stability theory of fractional-order systems, a novel synchronization approach for fractional order chaotic systems is proposed. We prove that the synchronization between drive system and response system with different fractional order q can be achieved, and the synchronization between different fractional-order chaotic systems with different fractional order q can be achieved. Two examples are used to illustrate the effectiveness of the proposed synchronization method. Numerical simulations coincide with the theoretical analysis.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Wei Zhu,et al.  Function projective synchronization for fractional-order chaotic systems , 2011 .

[3]  Mohammad Saleh Tavazoei,et al.  Chaos generation via a switching fractional multi-model system , 2010 .

[4]  Yongguang Yu,et al.  The synchronization of fractional-order Rössler hyperchaotic systems☆ , 2008 .

[5]  Xiaohua Xiong,et al.  Extending synchronization scheme to chaotic fractional-order Chen systems , 2006 .

[6]  Yao-Lin Jiang,et al.  Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal , 2008 .

[7]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[8]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[9]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[10]  Eduardo Serrano,et al.  Synchronization effects using a piecewise linear map-based spiking-bursting neuron model , 2006, Neurocomputing.

[11]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[12]  Changpin Li,et al.  Synchronization in fractional-order differential systems , 2005 .

[13]  Pei Yu,et al.  Chaos control and chaos synchronization for multi-scroll chaotic attractors generated using hyperbolic functions , 2010 .

[14]  Changming Ding,et al.  Synchronization of stochastic perturbed chaotic neural networks with mixed delays , 2010, J. Frankl. Inst..

[15]  Juebang Yu,et al.  Synchronization of fractional-order chaotic systems , 2005, Proceedings. 2005 International Conference on Communications, Circuits and Systems, 2005..

[16]  Giuseppe Grassi Propagation of projective synchronization in a series connection of chaotic systems , 2010, J. Frankl. Inst..

[17]  Zheng-Ming Ge,et al.  Chaos in a fractional order modified Duffing system , 2007 .

[18]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[19]  Ping Xiong,et al.  Lr-synchronization and adaptive synchronization of a class of chaotic Lurie systems under perturbations , 2011, J. Frankl. Inst..

[20]  Shiquan Shao,et al.  Controlling general projective synchronization of fractional order Rossler systems , 2009 .

[21]  Yuhua Xu,et al.  Topology identification and adaptive synchronization of uncertain complex networks with non-derivative and derivative coupling , 2010, J. Frankl. Inst..

[22]  Wolfgang Kinzel,et al.  Synchronization of mutually versus unidirectionally coupled chaotic semiconductor lasers , 2006, nlin/0604068.

[23]  Liu Chong-Xin,et al.  Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system , 2008 .

[24]  Yaolin Jiang,et al.  Generalized projective synchronization of fractional order chaotic systems , 2008 .

[25]  Ying-Cheng Lai,et al.  Control and applications of chaos , 1997 .

[26]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[27]  Daolin Xu,et al.  Chaos synchronization of the Chua system with a fractional order , 2006 .

[28]  Changpin Li,et al.  On chaos synchronization of fractional differential equations , 2007 .

[29]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[30]  Jinde Cao,et al.  Adaptive synchronization for delayed neural networks with stochastic perturbation , 2008, J. Frankl. Inst..

[31]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[32]  Changpin Li,et al.  The synchronization of three fractional differential systems , 2007 .

[33]  Ming He,et al.  A robust APD synchronization scheme and its application to secure communication , 2009, J. Frankl. Inst..

[34]  Jie Li,et al.  Chaos in the fractional order unified system and its synchronization , 2008, J. Frankl. Inst..

[35]  Chongxin Liu,et al.  Passive control on a unified chaotic system , 2010 .

[36]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[37]  Guohui Li,et al.  Generalized projective synchronization between Lorenz system and Chen’s system , 2007 .

[38]  Amalia Miliou,et al.  Secure communication by chaotic synchronization: Robustness under noisy conditions , 2007 .