Computing the Rao distance for gamma distributions
暂无分享,去创建一个
[1] A. F. Mitchell,et al. The Mahalanobis distance and elliptic distributions , 1985 .
[2] J. Burbea. Informative Geometry of Probability Spaces , 1984 .
[3] C. R. Rao,et al. Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .
[4] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[5] K. Matusita. Distance and decision rules , 1964 .
[6] I. Chavel. Riemannian Geometry: Isoperimetric Inequalities (Constant Curvature) , 2006 .
[7] Ferran Reverter Comes. Métodos computacionales para el cálculo de distancias riemannianas: aplicaciones a la geometría informativa correspondiente a la distribución gamma , 1999 .
[8] Ferran Reverter,et al. A modified taylor series method for solving initial-value problems in ordinary differential equations , 1997, Int. J. Comput. Math..
[9] Dirk Wauters,et al. Intensive Numerical and Symbolic Computing in Parametric Test Theory , 1993 .
[10] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[11] Carles M. Cuadras,et al. DISTANCE ANALYSIS IN DISCRIMINATION AND CLASSIFICATION USING BOTH CONTINUOUS AND CATEGORICAL VARIABLES , 1989 .
[12] Jacob Burbea,et al. THE INFORMATION METRIC FOR UNIVARIATE LINEAR ELLIPTIC MODELS , 1988 .
[13] J. M. Oller,et al. RAO ’ S DISTANCE FOR NEGATIVE MULTINOMIAL DISTRIBUTIONS , 1985 .
[14] C. R. Rao,et al. Differential metrics in probability spaces , 1984 .
[15] C. Atkinson. Rao's distance measure , 1981 .
[16] A. Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .
[17] P. Mahalanobis. On the generalized distance in statistics , 1936 .