Computing the Rao distance for gamma distributions

[1]  A. F. Mitchell,et al.  The Mahalanobis distance and elliptic distributions , 1985 .

[2]  J. Burbea Informative Geometry of Probability Spaces , 1984 .

[3]  C. R. Rao,et al.  Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .

[4]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[5]  K. Matusita Distance and decision rules , 1964 .

[6]  I. Chavel Riemannian Geometry: Isoperimetric Inequalities (Constant Curvature) , 2006 .

[7]  Ferran Reverter Comes Métodos computacionales para el cálculo de distancias riemannianas: aplicaciones a la geometría informativa correspondiente a la distribución gamma , 1999 .

[8]  Ferran Reverter,et al.  A modified taylor series method for solving initial-value problems in ordinary differential equations , 1997, Int. J. Comput. Math..

[9]  Dirk Wauters,et al.  Intensive Numerical and Symbolic Computing in Parametric Test Theory , 1993 .

[10]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[11]  Carles M. Cuadras,et al.  DISTANCE ANALYSIS IN DISCRIMINATION AND CLASSIFICATION USING BOTH CONTINUOUS AND CATEGORICAL VARIABLES , 1989 .

[12]  Jacob Burbea,et al.  THE INFORMATION METRIC FOR UNIVARIATE LINEAR ELLIPTIC MODELS , 1988 .

[13]  J. M. Oller,et al.  RAO ’ S DISTANCE FOR NEGATIVE MULTINOMIAL DISTRIBUTIONS , 1985 .

[14]  C. R. Rao,et al.  Differential metrics in probability spaces , 1984 .

[15]  C. Atkinson Rao's distance measure , 1981 .

[16]  A. Bhattacharyya On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .

[17]  P. Mahalanobis On the generalized distance in statistics , 1936 .