Necessary Condition for Path Partitioning Constraints

Given a directed graph $\mathcal{G}$, the K node-disjoint paths problem consists in finding a partition of $\mathcal{G}$ into K node-disjoint paths, such that each path ends up in a given subset of nodes in $\mathcal{G}$. This article provides a necessary condition for the K node-disjoint paths problem which combines (1) the structure of the reduced graph associated with $\mathcal{G}$, (2) the structure of each strongly connected component of $\mathcal{G}$ with respect to dominance relation between nodes, and (3) the way the nodes of two strongly connected components are inter-connected. This necessary condition is next used to deal with a path partitioning constraint.

[1]  Laurence A. Wolsey,et al.  Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 4th International Conference, CPAIOR 2007, Brussels, Belgium, May 23-26, 2007, Proceedings , 2007, CPAIOR.

[2]  Meinolf Sellmann,et al.  Cost-Based Filtering for Shorter Path Constraints , 2003, CP.

[3]  J. W. Suuballe,et al.  Disjoint Paths in a Network , 2022 .

[4]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[5]  M. Balinski,et al.  On an Integer Program for a Delivery Problem , 1964 .

[6]  Frédéric Benhamou Principles and Practice of Constraint Programming - CP 2006, 12th International Conference, CP 2006, Nantes, France, September 25-29, 2006, Proceedings , 2006, CP.

[7]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[8]  Yves Deville,et al.  Using Dominators for Solving Constrained Path Problems , 2006, PADL.

[9]  Francesca Rossi,et al.  Principles and Practice of Constraint Programming – CP 2003 , 2003, Lecture Notes in Computer Science.

[10]  Jens Vygen,et al.  NP-completeness of Some Edge-disjoint Paths Problems , 1995, Discret. Appl. Math..

[11]  C. Pandu Rangan,et al.  Linear Algorithm for Optimal Path Cover Problem on Interval Graphs , 1990, Inf. Process. Lett..

[12]  Nicolas Beldiceanu,et al.  Introducing global constraints in CHIP , 1994 .

[13]  Eric Bourreau,et al.  Conception d'une contrainte globale de chemin , 2004 .

[14]  Patrick Prosser,et al.  Rooted Tree and Spanning Tree Constraints , 2006 .

[15]  Robert E. Tarjan,et al.  A fast algorithm for finding dominators in a flowgraph , 1979, TOPL.

[16]  John E. Hopcroft,et al.  The Directed Subgraph Homeomorphism Problem , 1978, Theor. Comput. Sci..

[17]  Gerard J. Chang,et al.  The Path-Partition Problem in Block Graphs , 1994, Inf. Process. Lett..

[18]  John N. Hooker,et al.  A Filter for the Circuit Constraint , 2006, CP.

[19]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[20]  C. Berge Graphes et hypergraphes , 1970 .

[21]  R. Steele Optimization , 2005 .

[22]  Xavier Lorca,et al.  Combining Tree Partitioning, Precedence, Incomparability, and Degree Constraints, with an Application to Phylogenetic and Ordered-Path Problems , 2006 .

[23]  George Steiner,et al.  On the k-path partition of graphs , 2003, Theor. Comput. Sci..

[24]  Xavier Lorca,et al.  The tree Constraint , 2005, CPAIOR.