Computer-automated ABCD versus dermatologists with different degrees of experience in dermoscopy

BackgroundDermoscopy is a very useful and non-invasive technique for in vivo observation and preoperative diagnosis of pigmented skin lesions (PSLs) inasmuch as it enables analysis of surface and subsurface structures that are not discernible to the naked eye.MethodsThe authors used the ABCD rule of dermoscopy to test the accuracy of melanoma diagnosis with respect to a panel of 165 PSLs and the intra- and inter-observer diagnostic agreement obtained between three dermatologists with different degrees of experience, one General Practitioner and a DDA for computer-assisted diagnosis (Nevuscreen®, Arkè s.a.s., Avezzano, Italy).Results165 Pigmented Skin Lesions from 165 patients were selected. Histopathological examination revealed 132 benign melanocytic skin lesions and 33 melanomas. The kappa statistic, sensitivity, specificity and predictive positive and negative values were calculated to measure agreement between all the human observers and in comparison with the automated DDA.ConclusionOur results revealed poor reproducibility of the semi-quantitative algorithm devised by Stolz et al. independently of observers’ experience in dermoscopy. Nevuscreen® (Arkè s.a.s., Avezzano, Italy) proved to be ‘user friendly’ to all observers, thus enabling a more critical evaluation of each lesion and representing a helpful tool for clinicians without significant experience in dermoscopy in improving and achieving more accurate diagnosis of PSLs.

[1]  I Zalaudek,et al.  Meta‐analysis of digital dermoscopy follow‐up of melanocytic skin lesions: a study on behalf of the International Dermoscopy Society , 2013, Journal of the European Academy of Dermatology and Venereology : JEADV.

[2]  K Wolff,et al.  In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. , 1987, Journal of the American Academy of Dermatology.

[3]  P Altmeyer,et al.  Diagnostic and neural analysis of skin cancer (DANAOS). A multicentre study for collection and computer‐aided analysis of data from pigmented skin lesions using digital dermoscopy , 2003, The British journal of dermatology.

[4]  R. Wolfe,et al.  Comparative performance of 4 dermoscopic algorithms by nonexperts for the diagnosis of melanocytic lesions. , 2005, Archives of dermatology.

[5]  M. Binder,et al.  Epiluminescence microscopy. A useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. , 1995, Archives of dermatology.

[6]  Gernot Rassner,et al.  Modified ABC-point list of dermoscopy: A simplified and highly accurate dermoscopic algorithm for the diagnosis of cutaneous melanocytic lesions. , 2003, Journal of the American Academy of Dermatology.

[7]  H. Kittler,et al.  Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network , 1998, Melanoma research.

[8]  G. Argenziano,et al.  Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. , 1998, Archives of dermatology.

[9]  M. G. Fleming,et al.  Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. , 2003, Journal of the American Academy of Dermatology.

[10]  Riccardo Bono,et al.  Sensitivity, specificity, and diagnostic accuracy of three dermoscopic algorithmic methods in the diagnosis of doubtful melanocytic lesions: the importance of light brown structureless areas in differentiating atypical melanocytic nevi from thin melanomas. , 2007, Journal of the American Academy of Dermatology.