Boron-doped diamond dual-plate microtrench electrode for generator–collector chloride/chlorine sensing

[1]  Pedro Estrela,et al.  Cysteine-cystine redox cycling in a gold-gold dual-plate generator-collector microtrench sensor. , 2014, Analytical chemistry.

[2]  Eleni Bitziou,et al.  Fabrication route for the production of coplanar, diamond insulated, boron doped diamond macro- and microelectrodes of any geometry. , 2014, Analytical chemistry.

[3]  F. Marken,et al.  Nano-litre proton/hydrogen titration in a dual-plate platinum-platinum generator-collector electrode micro-trench , 2014 .

[4]  F. Marken,et al.  A dual-plate ITO-ITO generator-collector microtrench sensor: surface activation, spatial separation and suppression of irreversible oxygen and ascorbate interference. , 2014, The Analyst.

[5]  Andreas Offenhäusser,et al.  Redox cycling in nanoporous electrochemical devices. , 2014, Nanoscale.

[6]  F. Marken,et al.  Pulse electroanalysis at gold-gold micro-trench electrodes: chemical signal filtering. , 2013, Faraday discussions.

[7]  F. Marken,et al.  A gold–gold oil microtrench electrode for liquid–liquid anion transfer voltammetry , 2013, Electrophoresis.

[8]  Pradyumna S. Singh,et al.  Single-molecule electrochemistry: present status and outlook. , 2013, Accounts of chemical research.

[9]  Pradyumna S. Singh,et al.  Stochasticity in single-molecule nanoelectrochemistry: origins, consequences, and solutions. , 2012, ACS nano.

[10]  S. Waldvogel,et al.  Electrochemical synthesis on boron-doped diamond , 2012 .

[11]  O. Lahav,et al.  Revealing the mechanism of indirect ammonia electrooxidation , 2012 .

[12]  Ryosuke Kurokawa,et al.  A convenient method for determining the concentration of hydrogen in water: use of methylene blue with colloidal platinum , 2012, Medical gas research.

[13]  Pradyumna S. Singh,et al.  Lithography-based nanoelectrochemistry. , 2011, Analytical chemistry.

[14]  J. Luong,et al.  Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. , 2009, The Analyst.

[15]  A. Kapałka,et al.  The importance of electrode material in environmental electrochemistry: Formation and reactivity of free hydroxyl radicals on boron-doped diamond electrodes , 2008 .

[16]  F. Marken,et al.  Electroanalysis at diamond-like and doped-diamond electrodes , 2003 .

[17]  F. Marken,et al.  Voltammetry in the presence of ultrasound: Can ultrasound modify heterogeneous electron transfer kinetics? , 1995 .

[18]  A. Bard,et al.  Standard Potentials in Aqueous Solution , 1985 .

[19]  C. N. Reilley,et al.  Twin-Electrode Thin-Layer Electrochemistry. Determination of Chemical Reaction Rates by Decay of Steady-State Current. , 1966 .

[20]  Charles N. Reilley,et al.  Thin-layer electrochemistry: steady-state methods of studying rate processes , 1965 .

[21]  V. Lobo,et al.  Self-diffusion in electrolyte solutions : a critical examination of data compiled from the literature , 1989 .

[22]  A. Townshend Standard potentials in aqueous solutions , 1987 .

[23]  Faraday Discuss , 1985 .