Weighted Non-Trivial Multiply Intersecting Families
暂无分享,去创建一个
Let n and r be positive integers. Suppose that a family $$
{\user1{\mathcal{F}}} \subset 2^{{{\left[ n \right]}}}
$$ satisfies F1∩···∩Fr ≠∅ for all F1, . . .,Fr ∈$$
{\user1{\mathcal{F}}}
$$ and $$
{\bigcap {_{{F \in {\user1{\mathcal{F}}}}} } }F = \emptyset
$$. We prove that there exists ε=ε(r) >0 such that $$
{\sum {_{{F \in {\user1{\mathcal{F}}}}} } }\omega ^{{{\left| F \right|}}} {\left( {1 - \omega } \right)}^{{n - {\left| F \right|}}} \leqslant \omega ^{r} {\left( {r + 1 - r\omega } \right)}
$$ holds for 1/2≤w≤1/2+ε if r≥13.
[1] Norihide Tokushige,et al. Random walks and multiply intersecting families , 2005, J. Comb. Theory, Ser. A.
[2] Norihide Tokushige,et al. Weighted 3-Wise 2-Intersecting Families , 2002, J. Comb. Theory, Ser. A.
[3] David E. Daykin,et al. A finite set covering theorem II , 1972, Bulletin of the Australian Mathematical Society.
[4] William W. Brickman,et al. I, II, III, IV, V , 1963 .
[5] Norihide Tokushige,et al. Weighted multiply intersecting families , 2003 .