Multimedia Pattern Recognition in Soccer Video Using Time Intervals

In this paper we propose the Time Interval Multimedia Event (TIME) framework as a robust approach for recognition of multimedia patterns, e.g. highlight events, in soccer video. The representation used in TIME extends the Allen temporal interval relations and allows for proper inclusion of context and synchronization of the heterogeneous information sources involved in multimedia pattern recognition. For automatic classification of highlights in soccer video, we compare three different machine learning techniques, i.c. C4.5 decision tree, Maximum Entropy, and Support Vector Machine. It was found that by using the TIME framework the amount of video a user has to watch in order to see almost all highlights can be reduced considerably, especially in combination with a Support Vector Machine.

[1]  A. Murat Tekalp,et al.  Automatic soccer video analysis and summarization , 2003, IEEE Trans. Image Process..

[2]  Noboru Babaguchi,et al.  Event based indexing of broadcasted sports video by intermodal collaboration , 2002, IEEE Trans. Multim..

[3]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[6]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Mei Han,et al.  An integrated baseball digest system using maximum entropy method , 2002, MULTIMEDIA '02.

[8]  Marcel Worring,et al.  Time interval maximum entropy based event indexing in soccer video , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[9]  Adam L. Berger,et al.  A Maximum Entropy Approach to Natural Language Processing , 1996, CL.

[10]  Milind R. Naphade,et al.  A probabilistic framework for semantic video indexing, filtering, and retrieval , 2001, IEEE Trans. Multim..

[11]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[12]  Marco Aiello,et al.  Document understanding for a broad class of documents , 2002, Int. J. Document Anal. Recognit..

[13]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[14]  Djoerd Hiemstra,et al.  Lazy Users and Automatic Video Retrieval Tools in (the) Lowlands , 2001, TREC.

[15]  Alberto Del Bimbo,et al.  Soccer highlights detection and recognition using HMMs , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[16]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[17]  Wolfgang Effelsberg,et al.  Automatic recognition of film genres , 1995, MULTIMEDIA '95.

[18]  Wei-Hao Lin,et al.  News video classification using SVM-based multimodal classifiers and combination strategies , 2002, MULTIMEDIA '02.

[19]  J. Darroch,et al.  Generalized Iterative Scaling for Log-Linear Models , 1972 .

[20]  Marcel Worring,et al.  Multimodal Video Indexing : A Review of the State-ofthe-art , 2001 .

[21]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .