Maximally mutable Laurent polynomials
暂无分享,去创建一个
Tom Coates | Giuseppe Pitton | Alexander M. Kasprzyk | Ketil Tveiten | G. Pitton | A. Kasprzyk | T. Coates | Ketil Tveiten
[1] Graph potentials and moduli spaces of rank two bundles on a curve , 2020, 2009.05568.
[2] Tom Coates,et al. Quantum Periods for Certain Four-Dimensional Fano Manifolds , 2014, Exp. Math..
[3] V. Przyjalkowski. On Landau--Ginzburg models for Fano varieties , 2007, 0707.3758.
[4] A. Kasprzyk,et al. Four-dimensional Fano toric complete intersections , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[5] C. Hacon,et al. Rigidity properties of Fano varieties , 2009, 0911.0504.
[6] Benjamin Nill,et al. MINIMALITY AND MUTATION-EQUIVALENCE OF POLYGONS , 2015, Forum of Mathematics, Sigma.
[7] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[8] A. Corti,et al. Mirror Symmetry and Fano Manifolds , 2012, 1212.1722.
[9] Pierre Lairez,et al. Computing periods of rational integrals , 2014, Math. Comput..
[10] D. Straten,et al. Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians , 1997, alg-geom/9710022.
[11] A. Corti,et al. Quantum periods for 3-dimensional Fano manifolds , 2013, 1303.3288.
[12] N. Ilten. Mutations of Laurent Polynomials and Flat Families with Toric Fibers , 2012, 1205.4664.
[13] D. Cavey,et al. Classification of Minimal Polygons with Specified Singularity Content , 2017, 1703.05266.
[14] A. Kasprzyk. Canonical Toric Fano Threefolds , 2008, Canadian Journal of Mathematics.
[15] P. Hacking,et al. Smoothable del Pezzo surfaces with quotient singularities , 2008, Compositio Mathematica.
[16] A. Givental. A mirror theorem for toric complete intersections , 1997, alg-geom/9701016.
[17] I. Morrison,et al. On four-dimensional terminal quotient singularities , 1988 .
[18] A. Corti,et al. Del Pezzo surfaces with $$\frac{1}{3}(1,1)$$13(1,1) points , 2015, 1505.02092.
[19] One-parameter toric deformations of cyclic quotient singularities , 2008, 0801.2370.
[20] Andrea Petracci. An Example of Mirror Symmetry for Fano Threefolds , 2019, Birational Geometry and Moduli Spaces.
[21] Ketil Tveiten. Period integrals and mutation , 2015, Transactions of the American Mathematical Society.
[22] Masayuki Watanabe,et al. The Classification of Fano 3-Folds with Torus Embeddings , 1982 .
[23] Andrea Petracci,et al. Mirror symmetry and the classification of orbifold del Pezzo surfaces , 2015, 1501.05334.
[24] Toric Degenerations of Fano Varieties and Constructing Mirror Manifolds , 1997, alg-geom/9712034.
[25] The versal deformation of an isolated toric Gorenstein singularity , 1994, alg-geom/9403004.
[26] Miles Reid,et al. Young person''s guide to canonical singularities , 1985 .
[27] Benjamin Nill,et al. FANO POLYTOPES , 2012 .
[28] Cumrun Vafa,et al. Mirror Symmetry , 2000, hep-th/0002222.
[29] M. Akhtar. Polygonal Quivers. , 2019, 1907.08634.
[30] M. Kreuzer,et al. Classification of Reflexive Polyhedra in Three Dimensions , 1998 .
[31] Fredrik Meyer,et al. Representation theory , 2015 .
[32] I. Tyomkin. Tropical geometry and correspondence theorems via toric stacks , 2010, 1001.1554.
[33] J. Kollár,et al. Threefolds and deformations of surface singularities , 1988 .
[34] V. Przyjalkowski. Weak Landau–Ginzburg models for smooth Fano threefolds , 2009, 0902.4668.
[35] A. Kasprzyk,et al. Singularity content , 2014, 1401.5458.
[36] A. Kasprzyk,et al. Minkowski Polynomials and Mutations , 2012, 1212.1785.
[37] Sandor J. Kovacs,et al. Singularities of the minimal model program , 2013 .