Maximally mutable Laurent polynomials

We introduce a class of Laurent polynomials, called maximally mutable Laurent polynomials (MMLPs), which we believe correspond under mirror symmetry to Fano varieties. A subclass of these, called rigid, are expected to correspond to Fano varieties with terminal locally toric singularities. We prove that there are exactly 10 mutation classes of rigid MMLPs in two variables; under mirror symmetry these correspond one-to-one with the 10 deformation classes of smooth del Pezzo surfaces. Furthermore, we give a computer-assisted classification of rigid MMLPs in three variables with reflexive Newton polytope; under mirror symmetry these correspond one-to-one with the 98 deformation classes of three-dimensional Fano manifolds with very ample anti-canonical bundle. We compare our proposal to previous approaches to constructing mirrors to Fano varieties, and explain why mirror symmetry in higher dimensions necessarily involves varieties with terminal singularities. Every known mirror to a Fano manifold, of any dimension, is a rigid MMLP.

[1]  Graph potentials and moduli spaces of rank two bundles on a curve , 2020, 2009.05568.

[2]  Tom Coates,et al.  Quantum Periods for Certain Four-Dimensional Fano Manifolds , 2014, Exp. Math..

[3]  V. Przyjalkowski On Landau--Ginzburg models for Fano varieties , 2007, 0707.3758.

[4]  A. Kasprzyk,et al.  Four-dimensional Fano toric complete intersections , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  C. Hacon,et al.  Rigidity properties of Fano varieties , 2009, 0911.0504.

[6]  Benjamin Nill,et al.  MINIMALITY AND MUTATION-EQUIVALENCE OF POLYGONS , 2015, Forum of Mathematics, Sigma.

[7]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[8]  A. Corti,et al.  Mirror Symmetry and Fano Manifolds , 2012, 1212.1722.

[9]  Pierre Lairez,et al.  Computing periods of rational integrals , 2014, Math. Comput..

[10]  D. Straten,et al.  Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians , 1997, alg-geom/9710022.

[11]  A. Corti,et al.  Quantum periods for 3-dimensional Fano manifolds , 2013, 1303.3288.

[12]  N. Ilten Mutations of Laurent Polynomials and Flat Families with Toric Fibers , 2012, 1205.4664.

[13]  D. Cavey,et al.  Classification of Minimal Polygons with Specified Singularity Content , 2017, 1703.05266.

[14]  A. Kasprzyk Canonical Toric Fano Threefolds , 2008, Canadian Journal of Mathematics.

[15]  P. Hacking,et al.  Smoothable del Pezzo surfaces with quotient singularities , 2008, Compositio Mathematica.

[16]  A. Givental A mirror theorem for toric complete intersections , 1997, alg-geom/9701016.

[17]  I. Morrison,et al.  On four-dimensional terminal quotient singularities , 1988 .

[18]  A. Corti,et al.  Del Pezzo surfaces with $$\frac{1}{3}(1,1)$$13(1,1) points , 2015, 1505.02092.

[19]  One-parameter toric deformations of cyclic quotient singularities , 2008, 0801.2370.

[20]  Andrea Petracci An Example of Mirror Symmetry for Fano Threefolds , 2019, Birational Geometry and Moduli Spaces.

[21]  Ketil Tveiten Period integrals and mutation , 2015, Transactions of the American Mathematical Society.

[22]  Masayuki Watanabe,et al.  The Classification of Fano 3-Folds with Torus Embeddings , 1982 .

[23]  Andrea Petracci,et al.  Mirror symmetry and the classification of orbifold del Pezzo surfaces , 2015, 1501.05334.

[24]  Toric Degenerations of Fano Varieties and Constructing Mirror Manifolds , 1997, alg-geom/9712034.

[25]  The versal deformation of an isolated toric Gorenstein singularity , 1994, alg-geom/9403004.

[26]  Miles Reid,et al.  Young person''s guide to canonical singularities , 1985 .

[27]  Benjamin Nill,et al.  FANO POLYTOPES , 2012 .

[28]  Cumrun Vafa,et al.  Mirror Symmetry , 2000, hep-th/0002222.

[29]  M. Akhtar Polygonal Quivers. , 2019, 1907.08634.

[30]  M. Kreuzer,et al.  Classification of Reflexive Polyhedra in Three Dimensions , 1998 .

[31]  Fredrik Meyer,et al.  Representation theory , 2015 .

[32]  I. Tyomkin Tropical geometry and correspondence theorems via toric stacks , 2010, 1001.1554.

[33]  J. Kollár,et al.  Threefolds and deformations of surface singularities , 1988 .

[34]  V. Przyjalkowski Weak Landau–Ginzburg models for smooth Fano threefolds , 2009, 0902.4668.

[35]  A. Kasprzyk,et al.  Singularity content , 2014, 1401.5458.

[36]  A. Kasprzyk,et al.  Minkowski Polynomials and Mutations , 2012, 1212.1785.

[37]  Sandor J. Kovacs,et al.  Singularities of the minimal model program , 2013 .