Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding

[1]  Stefan Steinerberger,et al.  Clustering with t-SNE, provably , 2017, SIAM J. Math. Data Sci..

[2]  Ronald R. Coifman,et al.  Data-Driven Tree Transforms and Metrics , 2017, IEEE Transactions on Signal and Information Processing over Networks.

[3]  Mark Tygert,et al.  Algorithm 971 , 2017, ACM transactions on mathematical software. Association for Computing Machinery.

[4]  Martin Wattenberg,et al.  How to Use t-SNE Effectively , 2016 .

[5]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[6]  Emmanuel J. Candès,et al.  Randomized Algorithms for Low-Rank Matrix Factorizations: Sharp Performance Bounds , 2013, Algorithmica.

[7]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[8]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[9]  Nathan Halko,et al.  An Algorithm for the Principal Component Analysis of Large Data Sets , 2010, SIAM J. Sci. Comput..

[10]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[11]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[12]  Peter N. Yianilos,et al.  Data structures and algorithms for nearest neighbor search in general metric spaces , 1993, SODA '93.

[13]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.