Off the beaten track: A new linear model for interval data
暂无分享,去创建一个
Paula Brito | Sónia Dias | P. Brito | S. Dias
[1] Antonio Irpino,et al. Basic statistics for distributional symbolic variables: a new metric-based approach , 2011, Advances in Data Analysis and Classification.
[2] Jerónimo Aznar-Bellver,et al. Estimating Regression Parameters with Imprecise Input Data in an Appraisal Context , 2007, Eur. J. Oper. Res..
[3] David Abend. Analysis Of Symbolic Data Exploratory Methods For Extracting Statistical Information From Complex Data , 2016 .
[4] Carlo Bertoluzza,et al. On a new class of distances between fuzzy numbers , 1995 .
[5] Ana Colubi,et al. Least squares estimation of linear regression models for convex compact random sets , 2007, Adv. Data Anal. Classif..
[6] Vera Hofer,et al. Adapting a classification rule to local and global shift when only unlabelled data are available , 2015, Eur. J. Oper. Res..
[7] Edwin Diday,et al. Symbolic Data Analysis: Conceptual Statistics and Data Mining (Wiley Series in Computational Statistics) , 2007 .
[8] Paula Brito,et al. Linear regression model with histogram‐valued variables , 2015, Stat. Anal. Data Min..
[9] L. Billard,et al. Symbolic Regression Analysis , 2002 .
[10] Monique Noirhomme-Fraiture,et al. Far beyond the classical data models: symbolic data analysis , 2011, Stat. Anal. Data Min..
[11] C. Mallows. A Note on Asymptotic Joint Normality , 1972 .
[12] Michel Verleysen,et al. Towards Advanced Data Analysis by Combining Soft Computing and Statistics , 2012, SOCO 2012.
[13] Gil González-Rodríguez,et al. Estimation of a flexible simple linear model for interval data based on set arithmetic , 2011, Comput. Stat. Data Anal..
[14] M. Gil,et al. Least squares fitting of an affine function and strength of association for interval-valued data , 2002 .
[15] Witold Pedrycz,et al. Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing , 2014, Eur. J. Oper. Res..
[16] S. Dias. Linear regression with empirical distributions , 2014 .
[17] Francisco de A. T. de Carvalho,et al. Constrained linear regression models for symbolic interval-valued variables , 2010, Comput. Stat. Data Anal..
[18] G. Cordeiro,et al. Bivariate symbolic regression models for interval-valued variables , 2011 .
[19] P. Cortez,et al. A data mining approach to predict forest fires using meteorological data , 2007 .
[20] Paula Brito,et al. Symbolic Data Analysis: another look at the interaction of Data Mining and Statistics , 2014, WIREs Data Mining Knowl. Discov..
[21] Antonio Irpino,et al. A New Wasserstein Based Distance for the Hierarchical Clustering of Histogram Symbolic Data , 2006, Data Science and Classification.
[22] L. Billard,et al. Regression Analysis for Interval-Valued Data , 2000 .
[23] Francisco de A. T. de Carvalho,et al. Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..
[24] Paolo Giordani,et al. Lasso-constrained regression analysis for interval-valued data , 2015, Adv. Data Anal. Classif..
[25] J. Arroyo,et al. Forecasting histogram time series with k-nearest neighbours methods , 2009 .
[26] P. Brito,et al. Modelling interval data with Normal and Skew-Normal distributions , 2012 .
[27] Yongho Jeon,et al. A resampling approach for interval‐valued data regression , 2012, Stat. Anal. Data Min..
[28] Witold Pedrycz,et al. Granular Computing: Analysis and Design of Intelligent Systems , 2013 .