Partial and approximate symmetry detection for 3D geometry

"Symmetry is a complexity-reducing concept [...]; seek it every-where." - Alan J. PerlisMany natural and man-made objects exhibit significant symmetries or contain repeated substructures. This paper presents a new algorithm that processes geometric models and efficiently discovers and extracts a compact representation of their Euclidean symmetries. These symmetries can be partial, approximate, or both. The method is based on matching simple local shape signatures in pairs and using these matches to accumulate evidence for symmetries in an appropriate transformation space. A clustering stage extracts potential significant symmetries of the object, followed by a verification step. Based on a statistical sampling analysis, we provide theoretical guarantees on the success rate of our algorithm. The extracted symmetry graph representation captures important high-level information about the structure of a geometric model which in turn enables a large set of further processing operations, including shape compression, segmentation, consistent editing, symmetrization, indexing for retrieval, etc.

[1]  D. Donoho,et al.  ADAPTIVE MULTISCALE DETECTION OF FILAMENTARY STRUCTURES IN A BACKGROUND OF UNIFORM RANDOM POINTS 1 , 2006, math/0605513.

[2]  Jan-Olof Eklundh,et al.  Detecting Symmetry and Symmetric Constellations of Features , 2006, ECCV.

[3]  Peter Meer,et al.  Simultaneous multiple 3D motion estimation via mode finding on Lie groups , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[4]  Doug L. James,et al.  Skinning mesh animations , 2005, ACM Trans. Graph..

[5]  Szymon Rusinkiewicz,et al.  Symmetry descriptors and 3D shape matching , 2004, SGP '04.

[6]  Helmut Pottmann,et al.  Registration of point cloud data from a geometric optimization perspective , 2004, SGP '04.

[7]  Helmut Pottmann,et al.  From curve design algorithms to the design of rigid body motions , 2004, The Visual Computer.

[8]  Stefano Soatto,et al.  Integral Invariant Signatures , 2004, ECCV.

[9]  Yanxi Liu,et al.  A computational model for periodic pattern perception based on frieze and wallpaper groups , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  D. Cohen-Steiner,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[11]  J. Boissonnat,et al.  Provably Good Surface Sampling and Approximation , 2003, Symposium on Geometry Processing.

[12]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[13]  T. Funkhouser,et al.  A Reflective Symmetry Descriptor , 2002, ECCV.

[14]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[16]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[17]  Martin Raab,et al.  "Balls into Bins" - A Simple and Tight Analysis , 1998, RANDOM.

[18]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[19]  Changming Sun,et al.  3D Symmetry Detection Using The Extended Gaussian Image , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Hagit Hel-Or,et al.  Symmetry as a Continuous Feature , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  L. G. Harrison On growth and form , 1995, Nature.

[22]  D. Mount,et al.  An optimal algorithm for approximate nearest neighbor searching , 1994, SODA '94.

[23]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[24]  Kurt Mehlhorn,et al.  Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.

[25]  Richard A. Volz,et al.  Optimal algorithms for symmetry detection in two and three dimensions , 1985, The Visual Computer.

[26]  Mikhail J. Atallah,et al.  On Symmetry Detection , 1985, IEEE Transactions on Computers.

[27]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[28]  Gaston H. Gonnet,et al.  Expected Length of the Longest Probe Sequence in Hash Code Searching , 1981, JACM.

[29]  P.V.C. Hough,et al.  Machine Analysis of Bubble Chamber Pictures , 1959 .

[30]  Felix . Klein,et al.  Vergleichende Betrachtungen über neuere geometrische Forschungen , 1893 .

[31]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[32]  陈平,et al.  Balls into bins分配器算法 , 2005 .

[33]  D. Donoho,et al.  Adaptive multiscale detection of filamentary structures embedded in a background of uniform random points , 2003 .

[34]  Lucia K. Dale,et al.  Choosing good distance metrics and local planners for probabilistic roadmap methods , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[35]  K. Mulmuley,et al.  Randomized algorithms , 1997 .

[36]  W. Magnus,et al.  Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations , 1966 .