Soluble hemojuvelin is released by proprotein convertase-mediated cleavage at a conserved polybasic RNRR site.

[1]  L. Silvestri,et al.  Defective targeting of hemojuvelin to plasma membrane is a common pathogenetic mechanism in juvenile hemochromatosis. , 2007, Blood.

[2]  K. R. Meyers,et al.  Evidence That Inhibition of Hemojuvelin Shedding in Response to Iron Is Mediated through Neogenin* , 2007, Journal of Biological Chemistry.

[3]  N. Seidah,et al.  Proprotein convertases: lessons from knockouts , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[4]  P. Rotwein,et al.  Complex biosynthesis of the muscle-enriched iron regulator RGMc , 2006, Journal of Cell Science.

[5]  T. Ganz,et al.  Regulation of iron acquisition and iron distribution in mammals. , 2006, Biochimica et biophysica acta.

[6]  E. Raines,et al.  Emerging roles for ectodomain shedding in the regulation of inflammatory responses , 2006, Journal of leukocyte biology.

[7]  Raymond T Chung,et al.  Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression , 2006, Nature Genetics.

[8]  Xiaoling Xu,et al.  A Role of Smad4 in Iron Metabolism through the Positive Regulation of Hepcidin Expression , 2022 .

[9]  N. Andrews,et al.  Hemojuvelin Acts as a Bone Morphogenetic Protein Co-Receptor To Regulate Hepcidin Expression. , 2005 .

[10]  A. West,et al.  Interaction of Hemojuvelin with Neogenin Results in Iron Accumulation in Human Embryonic Kidney 293 Cells* , 2005, Journal of Biological Chemistry.

[11]  C. Woolf,et al.  Repulsive Guidance Molecule (RGMa), a DRAGON Homologue, Is a Bone Morphogenetic Protein Co-receptor* , 2005, Journal of Biological Chemistry.

[12]  P. Thompson,et al.  Modulatory effects of sCD14 and LBP on LPS-host cell interactions , 2005, Journal of endotoxin research.

[13]  S. Arber,et al.  Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. , 2005, The Journal of clinical investigation.

[14]  M. Pelto-huikko,et al.  Shedding light on ADAM metalloproteinases. , 2005, Trends in biochemical sciences.

[15]  A. Brivanlou,et al.  DRAGON, a Bone Morphogenetic Protein Co-receptor* , 2005, Journal of Biological Chemistry.

[16]  A. Rehemtulla,et al.  Furin Directly Cleaves proMMP-2 in the trans-Golgi Network Resulting in a Nonfunctioning Proteinase* , 2005, Journal of Biological Chemistry.

[17]  E. Beutler,et al.  Regulation of hepcidin transcription by interleukin-1 and interleukin-6. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  T. Ganz,et al.  Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin. , 2005, Blood.

[19]  A. Lauwers,et al.  Limited Redundancy of the Proprotein Convertase Furin in Mouse Liver* , 2004, Journal of Biological Chemistry.

[20]  E. Beutler,et al.  The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient hepatocytes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  T. Pihlajaniemi,et al.  The shed ectodomain of type XIII collagen affects cell behaviour in a matrix-dependent manner. , 2004, The Biochemical journal.

[22]  J. Bartsch,et al.  Therapeutic benefits from targeting of ADAM family members. , 2004, Biochemistry.

[23]  G. Alvarez-Bolado,et al.  Expression pattern of the repulsive guidance molecules RGM A, B and C during mouse development. , 2004, Gene expression patterns : GEP.

[24]  S. Arber,et al.  Repulsive Guidance Molecule (RGM) Gene Function Is Required for Neural Tube Closure But Not Retinal Topography in the Mouse Visual System , 2004, The Journal of Neuroscience.

[25]  D. Engelkamp,et al.  Isolation and expression pattern of three mouse homologues of chick Rgm. , 2004, Gene expression patterns : GEP.

[26]  Marie-Pierre Dubé,et al.  Mutations in HFE2 cause iron overload in chromosome 1q–linked juvenile hemochromatosis , 2004, Nature Genetics.

[27]  I. Hampson,et al.  GPI-specific phospholipase D mRNA expression in tumor cells of different malignancy , 2004, Clinical & Experimental Metastasis.

[28]  W. V. D. Van de Ven,et al.  Curbing activation: proprotein convertases in homeostasis and pathology , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  G. Thomas,et al.  Furin at the cutting edge: From protein traffic to embryogenesis and disease , 2002, Nature Reviews Molecular Cell Biology.

[30]  Matthias Mann,et al.  RGM is a repulsive guidance molecule for retinal axons , 2002, Nature.

[31]  A. Beaudet,et al.  Altered processing of the neurotensin/neuromedin N precursor in PC2 knock down mice: a biochemical and immunohistochemical study , 2002, Journal of neurochemistry.

[32]  T. Howell,et al.  Alterations in membrane-associated CD14 expression and the simultaneous liberation of soluble CD14 fragment in adherent macrophages mediated by a leukocyte carboxyl/aspartate protease , 2002, Journal of endotoxin research.

[33]  J. Fowlkes,et al.  Exploring the interface between metallo-proteinase activity and growth factor and cytokine bioavailability. , 2002, Cytokine & growth factor reviews.

[34]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[35]  K. Mann,et al.  1,10-Phenanthroline inhibits glycosylphosphatidylinositol anchoring by preventing phosphoethanolamine addition to glycosylphosphatidylinositol anchor precursors. , 2001, Biochemistry.

[36]  J G Flanagan,et al.  Regulated cleavage of a contact-mediated axon repellent. , 2000, Science.

[37]  M. Chignard,et al.  Proteolysis of monocyte CD14 by human leukocyte elastase inhibits lipopolysaccharide-mediated cell activation. , 1999, The Journal of clinical investigation.

[38]  G. Thomas,et al.  BMP‐4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development , 1998, The EMBO journal.

[39]  K Nakayama,et al.  Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. , 1997, The Biochemical journal.

[40]  N. Hooper,et al.  Membrane protein secretases. , 1997, The Biochemical journal.

[41]  J. Massagué,et al.  Diverse Cell Surface Protein Ectodomains Are Shed by a System Sensitive to Metalloprotease Inhibitors (*) , 1996, The Journal of Biological Chemistry.

[42]  K. Nakayama,et al.  Localization of Furin to the trans-Golgi Network and Recycling from the Cell Surface Involves Ser and Tyr Residues within the Cytoplasmic Domain (*) , 1995, The Journal of Biological Chemistry.

[43]  C. Eckerskorn,et al.  Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants , 1995, European journal of immunology.

[44]  H. Klenk,et al.  Maturation of the trans-Golgi network protease furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation , 1994, The Journal of cell biology.

[45]  M. G. Low,et al.  Factors affecting the ability of glycosylphosphatidylinositol-specific phospholipase D to degrade the membrane anchors of cell surface proteins. , 1991, The Biochemical journal.

[46]  J. Strominger,et al.  Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. , 1991, Journal of immunology.

[47]  H. Lodish Molecular Cell Biology , 1986 .