Lower bounds for the game colouring number of partial k-trees and planar graphs

This paper discusses the game colouring number of partial k-trees and planar graphs. Let col"g(PT"k) and col"g(P) denote the maximum game colouring number of partial k trees and the maximum game colouring number of planar graphs, respectively. In this paper, we prove that col"g(PT"k)=3k+2 and col"g(P)>=11. We also prove that the game colouring number col"g(G) of a graph is a monotone parameter, i.e., if H is a subgraph of G, then col"g(H)=

[1]  Xuding Zhu,et al.  Game chromatic number of outerplanar graphs , 1999 .

[2]  U. Faigle,et al.  On the game chromatic number of some classes of graphs , 1991 .

[3]  Xuding Zhu,et al.  A bound for the game chromatic number of graphs , 1999, Discret. Math..

[4]  Hal A. Kierstead,et al.  Very Asymmetric Marking Games , 2005, Order.

[5]  Xuding Zhu,et al.  Edge-partitions of planar graphs and their game coloring numbers , 2002 .

[6]  Zsolt Tuza,et al.  Marking Games and the Oriented Game Chromatic Number of Partial k-Trees , 2003, Graphs Comb..

[7]  Xuding Zhu,et al.  Edge‐partitions of planar graphs and their game coloring numbers , 2002, J. Graph Theory.

[8]  Xuding Zhu,et al.  Game chromatic index of k-degenerate graphs , 2001, J. Graph Theory.

[9]  Xuding Zhu,et al.  Refined activation strategy for the marking game , 2008, J. Comb. Theory B.

[10]  Hal A. Kierstead,et al.  Planar Graph Coloring with an Uncooperative Partner , 1991, Planar Graphs.

[11]  Xuding Zhu,et al.  Game chromatic number of outerplanar graphs , 1999, J. Graph Theory.

[12]  Hal A. Kierstead,et al.  A simple competitive graph coloring algorithm III , 2004, J. Comb. Theory B.

[13]  Xuding Zhu The Game Coloring Number of Planar Graphs , 1999, J. Comb. Theory, Ser. B.

[14]  Xuding Zhu The game coloring number of pseudo partial k-trees , 2000, Discret. Math..

[15]  Hans L. Bodlaender On the Complexity of Some Coloring Games , 1991, Int. J. Found. Comput. Sci..

[16]  Hal A. Kierstead,et al.  A Simple Competitive Graph Coloring Algorithm , 2000, J. Comb. Theory B.