Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure

Energy harvesting exploits ambient sources of energy such as mechanical loads, vibrations, human motion, waste heat, light or chemical sources and converts them into useful electrical energy. The applications for energy harvesting include low power electronics or wireless sensing at relatively lower power levels (nW to mW) with an aim to reduce a reliance on batteries or electrical power via cables and realise fully autonomous and self-powered systems. This review focuses on flexible energy harvesting system based on polyvinylidene fluoride based polymers, with an emphasis on manipulating and optimising the properties and performance of the polymeric materials and related nanocomposites through structuring the material at multiple scales. Ferroelectric properties are described and the potential of using the polarisation of the materials for vibration and thermal harvesting using piezo- and pyro-electric effects are explained. Approaches to tailor the ferroelectric, piezoelectric and pyroelectric properties of polymer materials are explored in detail; these include the influence of polymer processing conditions, heat treatment, nanoconfinement, blending, forming nanocomposites and electrospinning. Finally, examples of flexible harvesting devices that utilise the optimised ferroelectric polymer or nanocomposite systems are described and potential applications and future directions of research explored.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  Gang Chen,et al.  Microinjection of poly(vinylidene fluoride) in the presence of various additives , 2018 .

[4]  Weibo Cai,et al.  Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. , 2016, Nano energy.

[5]  A. Gruverman,et al.  Ferroelectric polymer nanopillar arrays on flexible substrates by reverse nanoimprint lithography , 2016 .

[6]  Qing Wang,et al.  Ferroelectric Polymers and Their Energy‐Related Applications , 2016 .

[7]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[8]  G. Madras,et al.  New Physical Insights into Shear History Dependent Polymorphism in Poly(vinylidene fluoride) , 2016 .

[9]  Prateek,et al.  Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. , 2016, Chemical reviews.

[10]  Seok-Jin Yoon,et al.  Structural approaches for enhancing output power of piezoelectric polyvinylidene fluoride generator , 2016 .

[11]  W. Moon,et al.  Electrospinning of well-aligned fiber bundles using an End-point Control Assembly method , 2016 .

[12]  E. Lee,et al.  First-Principles Study of the α-β Phase Transition of Ferroelectric Poly(vinylidene difluoride): Observation of Multiple Transition Pathways. , 2016, The journal of physical chemistry. B.

[13]  M. A. Garza-Navarro,et al.  Electrospun polyvinylidene fluoride nanofibers by bubble electrospinning technique , 2016 .

[14]  A. K. Tyagi,et al.  Multiferroic PVDF–Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers , 2016 .

[15]  D. Mandal,et al.  Design of In Situ Poled Ce(3+)-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator. , 2016, ACS applied materials & interfaces.

[16]  Wenbing Hu,et al.  Low-temperature crystallization of P(VDF-TrFE-CFE) studied by Flash DSC , 2016 .

[17]  Jing Wang,et al.  Dramatically improved piezoelectric properties of poly(vinylidene fluoride) composites by incorporating aligned TiO2@MWCNTs , 2016 .

[18]  A. K. Tyagi,et al.  Enhancement of dielectric, ferroelectric and magneto-dielectric properties in PVDF–BaFe12O19 composites: a step towards miniaturizated electronic devices , 2016 .

[19]  Nosang V. Myung,et al.  Size-dependent piezoelectric and mechanical properties of electrospun P(VDF-TrFE) nanofibers for enhanced energy harvesting , 2016 .

[20]  Richard A. Revia,et al.  Electrospun uniaxially-aligned composite nanofibers as highly-efficient piezoelectric material , 2016 .

[21]  Y. Xin,et al.  Full-fiber piezoelectric sensor by straight PVDF/nanoclay nanofibers , 2016 .

[22]  G. Madras,et al.  Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: assessing through piezoresponse force microscopy , 2016 .

[23]  Pooi See Lee,et al.  Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. , 2016, ACS applied materials & interfaces.

[24]  A. McGaughey,et al.  Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers. , 2016, The Journal of chemical physics.

[25]  Epsita Kar,et al.  Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles , 2015 .

[26]  Enrico Drioli,et al.  Crystalline polymorphism in poly(vinylidenefluoride) membranes , 2015 .

[27]  Biswajit Mahanty,et al.  Self‐poled Efficient Flexible “Ferroelectretic” Nanogenerator: A New Class of Piezoelectric Energy Harvester , 2015 .

[28]  G. Zhong,et al.  Polymorphic Extended-Chain and Folded-Chain Crystals in Poly(vinylidene fluoride) Achieved by Combination of High Pressure and Ion–Dipole Interaction , 2015 .

[29]  V. Ladmiral,et al.  Importance of Microstructure Control for Designing New Electroactive Terpolymers Based on Vinylidene Fluoride and Trifluoroethylene , 2015 .

[30]  Seung‐Hwan Chang,et al.  Characterization of an electroactive polymer (PVDF-TrFE) film-type sensor for health monitoring of composite structures , 2015 .

[31]  Yunsheng Ding,et al.  Effect of graphene modified by a long alkyl chain ionic liquid on crystallization kinetics behavior of poly(vinylidene fluoride) , 2015 .

[32]  M. Yin,et al.  Critical Composition of the β Form of Poly(vinylidene fluoride) in Miscible Crystalline/Crystalline Blends. , 2015, The journal of physical chemistry. B.

[33]  Xianghai Ran,et al.  The induction of poly(vinylidene fluoride) electroactive phase by modified anodic aluminum oxide template nanopore surface , 2015 .

[34]  Yuan Deng,et al.  Enhanced ferroelectricity and energy storage in poly(vinylidene fluoride)–clay nanocomposite films via nanofiller surface charge modulation , 2015 .

[35]  Chung-Kun Yen,et al.  Near-field electrospinning enhances the energy harvesting of hollow PVDF piezoelectric fibers , 2015 .

[36]  A. C. Lopes,et al.  Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blends , 2015 .

[37]  M. Benwadih,et al.  Impact of crystallization on ferro-, piezo- and pyro-electric characteristics in thin film P(VDF–TrFE) , 2015 .

[38]  Tong Lin,et al.  Robust Mechanical-to-Electrical Energy Conversion from Short-Distance Electrospun Poly(vinylidene fluoride) Fiber Webs. , 2015, ACS applied materials & interfaces.

[39]  A. K. Tyagi,et al.  Fabrication of flexible and self-standing inorganic-organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles. , 2015, Dalton transactions.

[40]  Sukhen Das,et al.  Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles. , 2015, Physical chemistry chemical physics : PCCP.

[41]  Nan Zhang,et al.  Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide , 2015 .

[42]  Y. Fuh,et al.  Hybrid Energy Harvester Consisting of Piezoelectric Fibers with Largely Enhanced 20 V for Wearable and Muscle-Driven Applications. , 2015, ACS applied materials & interfaces.

[43]  M. M. Abolhasani,et al.  Enhanced ferroelectric properties of electrospun poly(vinylidene fluoride) nanofibers by adjusting processing parameters , 2015 .

[44]  S. Pruvost,et al.  Understanding of Versatile and Tunable Nanostructuration of Ionic Liquids on Fluorinated Copolymer , 2015 .

[45]  J. Jang,et al.  Enhanced Crystallinity, Dielectric, and Energy Harvesting Performances of Surface‐Treated Barium Titanate Hollow Nanospheres/PVDF Nanocomposites , 2015 .

[46]  Nae-Eung Lee,et al.  High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage , 2015 .

[47]  V. Tiwari,et al.  Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites , 2015 .

[48]  Nan Zhang,et al.  Carbon nanotubes accelerated poly(vinylidene fluoride) crystallization from miscible poly(vinylidene fluoride)/poly(methyl methacrylate) blend and the resultant crystalline morphologies , 2015 .

[49]  Sumanta Kumar Karan,et al.  Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. , 2015, Nanoscale.

[50]  A. Nandi,et al.  Interface engineering of ionic liquid integrated graphene in poly(vinylidene fluoride) matrix yielding magnificent improvement in mechanical, electrical and dielectric properties , 2015 .

[51]  J. Zhai,et al.  Poly(vinylidene fluoride) nanocomposite capacitors with a significantly enhanced dielectric constant and energy density by filling with surface-fluorinated Ba0.6Sr0.4TiO3 nanofibers , 2015 .

[52]  J. Jang,et al.  Poly(vinylidene fluoride)/NH2-Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor. , 2015, ACS applied materials & interfaces.

[53]  Sang-Jae Kim,et al.  Flexible, Hybrid Piezoelectric Film (BaTi(1-x)Zr(x)O3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor. , 2015, ACS applied materials & interfaces.

[54]  N. Soin,et al.  Exclusive self-aligned β-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. , 2015, Chemical communications.

[55]  P. Zhu,et al.  Electrospinning of PVDF nanofibrous membranes with controllable crystalline phases , 2015 .

[56]  Dezhi Wu,et al.  Electrospinning-induced preferred dipole orientation in PVDF fibers , 2015, Journal of Materials Science.

[57]  Hui Li,et al.  β phase PVDF-hfp induced by mesoporous SiO2 nanorods: synthesis and formation mechanism , 2015 .

[58]  Christopher R. Bowen,et al.  Micropatterning of Flexible and Free Standing Polyvinylidene Difluoride (PVDF) Films for Enhanced Pyroelectric Energy Transformation , 2015 .

[59]  Seok-Jin Yoon,et al.  High Output Piezo/Triboelectric Hybrid Generator , 2015, Scientific Reports.

[60]  Nur Amin Hoque,et al.  The role of cerium(III)/yttrium(III) nitrate hexahydrate salts on electroactive β phase nucleation and dielectric properties of poly(vinylidene fluoride) thin films , 2015 .

[61]  Chung-Kun Yen,et al.  Significant piezoelectric and energy harvesting enhancement of poly(vinylidene fluoride)/polypeptide fiber composites prepared through near-field electrospinning , 2015 .

[62]  Dipankar Mandal,et al.  Self-oriented β-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrathin Langmuir-Schaefer film. , 2015, Physical chemistry chemical physics : PCCP.

[63]  M. M. Abolhasani,et al.  A facile method to enhance ferroelectric properties in PVDF nanocomposites , 2015 .

[64]  I. Neves,et al.  Ion Exchange Dependent Electroactive Phase Content and Electrical Properties of Poly(vinylidene fluoride)/Na(M)Y Composites , 2015 .

[65]  Angela R. Rudolph,et al.  Imaging the effects of annealing on the polymorphic phases of poly(vinylidene fluoride). , 2015, The journal of physical chemistry. B.

[66]  Xin Xu,et al.  An electrospun PVDF-TrFe fiber sensor platform for biological applications , 2015 .

[67]  Kunyue Teng,et al.  Improving dielectric properties of poly(vinylidene fluoride) composites: effects of surface functionalization of exfoliated graphene , 2015 .

[68]  Tong Lin,et al.  Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats , 2015 .

[69]  Pradip Thakur,et al.  Effect of in situ synthesized Fe2O3 and Co3O4 nanoparticles on electroactive β phase crystallization and dielectric properties of poly(vinylidene fluoride) thin films. , 2015, Physical chemistry chemical physics : PCCP.

[70]  D. Mandal,et al.  Self-poled transparent and flexible UV light-emitting cerium complex-PVDF composite: a high-performance nanogenerator. , 2015, ACS applied materials & interfaces.

[71]  Vijay Narayan,et al.  A Scalable Nanogenerator Based on Self‐Poled Piezoelectric Polymer Nanowires with High Energy Conversion Efficiency , 2014, 1505.03694.

[72]  B. Jaleh,et al.  Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films , 2014 .

[73]  Christopher R. Bowen,et al.  Pyroelectric materials and devices for energy harvesting applications , 2014 .

[74]  Xinyu Xue,et al.  PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell , 2014 .

[75]  G. Amarendra,et al.  Free volume study on the origin of dielectric constant in a fluorine-containing polyimide blend: poly(vinylidene fluoride-co-hexafluoro propylene)/poly(ether imide). , 2014, The journal of physical chemistry. B.

[76]  J. Qiu,et al.  Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites , 2014 .

[77]  Ozan Aktas,et al.  Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique. , 2014, ACS nano.

[78]  A. Zucchelli,et al.  Electrospun nanofibers with piezoelectric properties , 2014, 2014 International Conference on Advances in Communication and Computing Technologies (ICACACT 2014).

[79]  Wei Yang,et al.  Induced formation of dominating polar phases of poly(vinylidene fluoride): positive ion-CF2 dipole or negative ion-CH2 dipole interaction. , 2014, The journal of physical chemistry. B.

[80]  G. Madras,et al.  Shear induced crystallization in different polymorphic forms of PVDF induced by surface functionalized MWNTs in PVDF/PMMA blends. , 2014, Physical chemistry chemical physics : PCCP.

[81]  Minoo Naebe,et al.  A new approach for mechanisms of ferroelectric crystalline phase formation in PVDF nanocomposites. , 2014, Physical chemistry chemical physics : PCCP.

[82]  Ping Zhao,et al.  Sponge‐Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self‐Powered Electronic Systems , 2014 .

[83]  Elias Siores,et al.  Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications , 2014 .

[84]  G. Zhong,et al.  Composite Poly(vinylidene fluoride)/Polystyrene Latex Particles for Confined Crystallization in 180 nm Nanospheres via Emulsifier-Free Batch Seeded Emulsion Polymerization , 2014 .

[85]  Yves Leterrier,et al.  Process influences on the structure, piezoelectric, and gas‐barrier properties of PVDF‐TrFE copolymer , 2014 .

[86]  A. C. Lopes,et al.  Electroactive phases of poly(vinylidene fluoride) : determination, processing and applications , 2014 .

[87]  Jipeng Guan,et al.  Effect of a room-temperature ionic liquid on the structure and properties of electrospun poly(vinylidene fluoride) nanofibers. , 2014, ACS applied materials & interfaces.

[88]  S. Evoy,et al.  A review of piezoelectric polymers as functional materials for electromechanical transducers , 2014 .

[89]  V. Djoković,et al.  Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler , 2014 .

[90]  U-In Chung,et al.  Effects of substrate on piezoelectricity of electrospun poly(vinylidene fluoride)-nanofiber-based energy generators. , 2014, ACS applied materials & interfaces.

[91]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[92]  D. Guo,et al.  Ferroelectric polymer nanostructures: fabrication, structural characteristics and performance under confinement. , 2014, Journal of nanoscience and nanotechnology.

[93]  Liwei Lin,et al.  Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process , 2014 .

[94]  D. Jehnichen,et al.  Achieving β-phase poly(vinylidene fluoride) from melt cooling: Effect of surface functionalized carbon nanotubes , 2014 .

[95]  Majid Minary-Jolandan,et al.  Nano/microscale pyroelectric energy harvesting: challenges and opportunities , 2013 .

[96]  Liping Zhao,et al.  Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties , 2013 .

[97]  C. Pan,et al.  Piezoelectricity of Well-Aligned Electrospun Fiber Composites , 2013, IEEE Sensors Journal.

[98]  K. Lian,et al.  Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics , 2013 .

[99]  Jianming Zheng,et al.  Silver nanowire dopant enhancing piezoelectricity of electrospun PVDF nanofiber web , 2013, Other Conferences.

[100]  S. Bose,et al.  Segmental relaxations and crystallization-induced phase separation in PVDF/PMMA blends in the presence of surface-functionalized multiwall carbon nanotubes. , 2013, The journal of physical chemistry. B.

[101]  Senentxu Lanceros-Méndez,et al.  Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites , 2013 .

[102]  Giancarlo Canavese,et al.  Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. , 2013, ACS applied materials & interfaces.

[103]  A. C. Lopes,et al.  Nanoparticle size and concentration dependence of the electroactive phase content and electrical and optical properties of Ag/poly(vinylidene fluoride) composites. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[104]  Andreas Greiner,et al.  Functional materials by electrospinning of polymers , 2013 .

[105]  Hyoung Jin Choi,et al.  Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride) , 2013 .

[106]  A. K. Tyagi,et al.  Inorganic–organic multiferroic hybrid films of Fe3O4 and PVDF with significant magneto-dielectric coupling , 2013 .

[107]  Seema Sharma Ferrolectric nanofibers: principle, processing and applications , 2013 .

[108]  Fu Liu,et al.  Effect of solvent power on PVDF membrane polymorphism during phase inversion , 2013 .

[109]  Liwei Lin,et al.  Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning , 2013 .

[110]  C. T. Pan,et al.  Mechanical properties of piezoelectric PVDF/MWCNT fibers prepared by flat/hollow cylindrical near-field electrospinning process , 2013, The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[111]  G. Chase,et al.  Modified electric fields to control the direction of electrospinning jets , 2013 .

[112]  Zhicheng Zhang,et al.  Crystal phase of poly(vinylidene fluoride‐co‐trifluoroethylene) synthesized via hydrogenation of poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) , 2013 .

[113]  Zhong Lin Wang,et al.  Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. , 2013, ACS nano.

[114]  A. Nandi,et al.  Ionic liquid integrated multiwalled carbon nanotube in a poly(vinylidene fluoride) matrix: formation of a piezoelectric β-polymorph with significant reinforcement and conductivity improvement. , 2013, ACS applied materials & interfaces.

[115]  Jun Zhang,et al.  Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen , 2012, Sensors.

[116]  H. Radousky,et al.  Energy harvesting: an integrated view of materials, devices and applications , 2012, Nanotechnology.

[117]  G. Zhong,et al.  Role of ion-dipole interactions in nucleation of gamma poly(vinylidene fluoride) in the presence of graphene oxide during melt crystallization. , 2012, The journal of physical chemistry. B.

[118]  Y. Shacham-Diamand,et al.  Nano-imprinting lithography of P(VDF-TrFE-CFE) for flexible freestanding MEMS devices , 2012 .

[119]  Zhong Lin Wang,et al.  Progress in nanogenerators for portable electronics , 2012 .

[120]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[121]  Zhong‐Lin Wang,et al.  Progress in Piezotronics and Piezo‐Phototronics , 2012, Advanced materials.

[122]  Zhong Lin Wang From nanogenerators to piezotronics—A decade-long study of ZnO nanostructures , 2012 .

[123]  Miqin Zhang,et al.  Centrifugal electrospinning of highly aligned polymer nanofibers over a large area , 2012 .

[124]  El Mokhtar Essassi,et al.  Piezoelectric β-polymorph formation and properties enhancement in graphene oxide – PVDF nanocomposite films , 2012 .

[125]  Senentxu Lanceros-Méndez,et al.  Role of Nanoparticle Surface Charge on the Nucleation of the Electroactive β-Poly(vinylidene fluoride) Nanocomposites for Sensor and Actuator Applications , 2012 .

[126]  D. Mandal,et al.  Simple synthesis of palladium nanoparticles, β-phase formation, and the control of chain and dipole orientations in palladium-doped poly(vinylidene fluoride) thin films. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[127]  Liping Zhao,et al.  Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). , 2012, The journal of physical chemistry. B.

[128]  Darryl S. Williams,et al.  The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). , 2012, The journal of physical chemistry. B.

[129]  Husnu Emrah Unalan,et al.  Nanowires for energy generation , 2012, Nanotechnology.

[130]  Liwei Lin,et al.  Piezoelectric nanofibers for energy scavenging applications , 2012 .

[131]  Amit Kumar,et al.  Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir–Blodgett deposition , 2012 .

[132]  Q. Fu,et al.  Ferroelectric behavior in the high temperature paraelectric phase in a poly(vinylidene fluoride-co-trifluoroethylene) random copolymer , 2012 .

[133]  Jyoti Jog,et al.  Enhanced piezoresponse of electrospun PVDF mats with a touch of nickel chloride hexahydrate salt. , 2012, Nanoscale.

[134]  S. Lanceros‐Méndez,et al.  Correlation between crystallization kinetics and electroactive polymer phase nucleation in ferrite/poly(vinylidene fluoride) magnetoelectric nanocomposites. , 2012, The journal of physical chemistry. B.

[135]  Alejandro Criado,et al.  Inside Cover: [16]Cloverphene: a Clover‐Shaped cata‐Condensed Nanographene with Sixteen Fused Benzene Rings (Angew. Chem. Int. Ed. 1/2012) , 2012 .

[136]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[137]  Eun Kyung Lee,et al.  Porous PVDF as effective sonic wave driven nanogenerators. , 2011, Nano letters.

[138]  Xingyi Huang,et al.  Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. , 2011, ACS applied materials & interfaces.

[139]  A. Nandi,et al.  Physical properties of poly(vinylidene fluoride) composites with polymer functionalized multiwalled carbon nanotubes using nitrene chemistry , 2011 .

[140]  S. Lanceros‐Méndez,et al.  Nucleation of the Electroactive γ Phase and Enhancement of the Optical Transparency in Low Filler Content Poly(vinylidene)/Clay Nanocomposites , 2011 .

[141]  Tong Lin,et al.  Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes , 2011 .

[142]  Yoshimichi Ohki,et al.  Effects of crystallinity on dielectric properties of poly(L‐lactide) , 2011 .

[143]  Dipankar Mandal,et al.  Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. , 2011, Macromolecular rapid communications.

[144]  H. Fong,et al.  Understanding polymorphism formation in electrospun fibers of immiscible Poly(vinylidene fluoride) blends , 2011 .

[145]  J. Cavaillé,et al.  Improvement of electrostrictive properties of a polyether-based polyurethane elastomer filled with conductive carbon black , 2011 .

[146]  J. Jog,et al.  Electrospun PVDF/BaTiO3 nanocomposites: polymorphism and thermal emissivity studies , 2011 .

[147]  Z. Dang,et al.  Giant Dielectric Permittivity Nanocomposites: Realizing True Potential of Pristine Carbon Nanotubes in Polyvinylidene Fluoride Matrix through an Enhanced Interfacial Interaction , 2011 .

[148]  Anja Lund,et al.  Enhancement of β phase crystals formation with the use of nanofillers in PVDF films and fibres , 2011 .

[149]  K. Kim,et al.  Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P(VDF-TrFE) film for nonvolatile polymer memory device , 2010 .

[150]  Zhong Lin Wang,et al.  Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics , 2010 .

[151]  W. Zhong,et al.  Achieving very high fraction of β-crystal PVDF and PVDF/CNF composites and their effect on AC conductivity and microstructure through a stretching process , 2010 .

[152]  Xiaojun Yan,et al.  Piezoelectric actuation of direct-write electrospun fibers , 2010 .

[153]  Yi Qi,et al.  Nanotechnology-enabled flexible and biocompatible energy harvesting , 2010 .

[154]  Paisan Khanchaitit,et al.  New Route Toward High-Energy-Density Nanocomposites Based on Chain-End Functionalized Ferroelectric Polymers , 2010 .

[155]  Benoit Guiffard,et al.  Evaluation of energy harvesting performance of electrostrictive polymer and carbon-filled terpolymer composites , 2010 .

[156]  G. Boiteux,et al.  Dielectric behaviour of BaTiO3 / P (VDF-HFP) composite thin films prepared by solvent evaporation method , 2010, 2010 10th IEEE International Conference on Solid Dielectrics.

[157]  Zhicheng Zhang,et al.  Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride) , 2010 .

[158]  S. Lanceros‐Méndez,et al.  Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride) , 2010 .

[159]  Zhong Lin Wang,et al.  Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. , 2010, ACS nano.

[160]  Junting Xu,et al.  Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly(vinylidene fluoride). , 2010, ACS applied materials & interfaces.

[161]  Yiu-Wing Mai,et al.  Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties , 2010 .

[162]  T. Russell,et al.  Confinement Effects on Crystallization and Curie Transitions of Poly(vinylidene fluoride-co-trifluoroethylene) , 2010 .

[163]  Laurent Pilon,et al.  Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting , 2010, Smart Materials and Structures.

[164]  V. Ferrari,et al.  Thermal energy harvesting through pyroelectricity , 2010 .

[165]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[166]  Q. Jiang,et al.  Formation Mechanism of β-Phase in PVDF/CNT Composite Prepared by the Sonication Method , 2009 .

[167]  Dimos Poulikakos,et al.  An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures , 2009, Nanotechnology.

[168]  B. Améduri From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. , 2009, Chemical reviews.

[169]  José Antonio Malmonge,et al.  Piezo and dielectric properties of PHB–PZT composite , 2009 .

[170]  K. Kim,et al.  Crystalline Structure and Ferroelectric Response of Poly(vinylidene fluoride)/Organically Modified Silicate Thin Films Prepared by Heat Controlled Spin Coating , 2009 .

[171]  S. Ikeda,et al.  Effect of Blended Montomollironite on Crystallization of Poly(vinylidene fluoride) , 2009 .

[172]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[173]  Miqin Zhang,et al.  Design and evaluation of a nanoscale differential tensile test device for nanofibers , 2009 .

[174]  Andreas Greiner,et al.  High Precision Deposition Electrospinning of nanofibers and nanofiber nonwovens , 2009 .

[175]  P. Maiti,et al.  Radiation-resistant behavior of poly(vinylidene fluoride)/layered silicate nanocomposites. , 2009, ACS applied materials & interfaces.

[176]  Xingyi Huang,et al.  Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride) , 2009 .

[177]  S. Lanceros‐Méndez,et al.  Local variation of the dielectric properties of poly(vinylidene fluoride) during the α- to β-phase transformation , 2009 .

[178]  Xuehong Lu,et al.  Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[179]  K. Kim,et al.  Preferential formation of electroactive crystalline phases in poly(vinylidene fluoride)/organically modified silicate nanocomposites , 2008 .

[180]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[181]  A. Misra,et al.  Studies on poly(vinylidene fluoride)–clay nanocomposites: Effect of different clay modifiers , 2008 .

[182]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[183]  Darrell H. Reneker,et al.  Electrospinning jets and polymer nanofibers , 2008 .

[184]  D. Guyomar,et al.  Pyroelectric energy conversion: Optimization principles , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[185]  D. Clarke,et al.  Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[186]  Yifei Yang,et al.  Simultaneous stretching and static electric field poling of poly(vinylidene fluoride‐hexafluoropropylene) copolymer films , 2007 .

[187]  A. Nandi,et al.  Piezoelectric β Polymorph in Poly(vinylidene fluoride)-Functionalized Multiwalled Carbon Nanotube Nanocomposite Films , 2007 .

[188]  S. Goh,et al.  Microstructure, crystallization and dynamic mechanical behaviour of poly(vinylidene fluoride) composites containing poly(methyl methacrylate)-grafted multiwalled carbon nanotubes , 2007 .

[189]  K. Nakayama,et al.  Unique Orientation Textures Induced by Confined Crystal Growth of Poly(vinylidene fluoride) in Oriented Blends with Polyamide 6 , 2007 .

[190]  Ali Akbar Yousefi,et al.  Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films , 2007 .

[191]  M. Kotaki,et al.  Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers , 2007 .

[192]  Reimund Gerhard-Multhaupt,et al.  Relaxation processes at the glass transition in polyamide 11: from rigidity to viscoelasticity. , 2006, The Journal of chemical physics.

[193]  Peggy Cebe,et al.  Nanocomposites of poly(vinylidene fluoride) with organically modified silicate , 2006 .

[194]  I. Šics,et al.  On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites , 2006 .

[195]  Zhongyang Cheng,et al.  Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer , 2006 .

[196]  Jianhua Cao,et al.  Preparation and characterization of PVDF–HFP microporous flat membranes by supercritical CO2 induced phase separation , 2005 .

[197]  S. Lang Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool , 2005 .

[198]  Karla Mossi,et al.  Harvesting Energy Using a Thin Unimorph Prestressed Bender: Geometrical Effects , 2005 .

[199]  Ali Akbar Yousefi,et al.  Conformational changes and phase transformation mechanisms in PVDF solution-cast films , 2004 .

[200]  C. Batt,et al.  Dramatic Enhancements in Toughness of Polyvinylidene Fluoride Nanocomposites via Nanoclay‐Directed Crystal Structure and Morphology , 2004 .

[201]  R. Czerw,et al.  Properties of Polyvinylidene Difluoride−Carbon Nanotube Blends , 2004 .

[202]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[203]  J. Runt,et al.  P(VDF-TrFE)-layered silicate nanocomposites. Part 1. X-ray scattering and thermal analysis studies , 2004 .

[204]  Toshihisa Horiuchi,et al.  Pyroelectricity of Ferroelectric Vinylidene Fluoride-Oligomer-Evaporated Thin Films , 2003 .

[205]  A. Salimi,et al.  FTIR STUDIES OF -PHASE CRYSTAL FORMATION IN STRETCHED PVDF FILMS , 2003 .

[206]  W. Euler,et al.  Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy , 2003 .

[207]  Younan Xia,et al.  Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays , 2003 .

[208]  Yongjin Li,et al.  Mechanistic Investigation into the Unique Orientation Textures of Poly(vinylidene fluoride) in Blends with Nylon 11 , 2003 .

[209]  A. Petchsuk,et al.  Synthesis and Properties of Ferroelectric Fluoroterpolymers with Curie Transition at Ambient Temperature , 2002 .

[210]  Otto J. Gregory,et al.  The Role of Solution Phase Water on the Deposition of Thin Films of Poly(vinylidene fluoride) , 2002 .

[211]  M. Wegener,et al.  Preparation and assessment of piezo- and pyroelectric poly (vinylidene fluoride-hexafluoropropylene) copolymer films , 2001 .

[212]  E. Zussman,et al.  Electrostatic field-assisted alignment of electrospun nanofibres , 2001 .

[213]  Haisheng Xu Dielectric properties and ferroelectric behavior of poly(vinylidene fluoride‐trifluoroethylene) 50/50 copolymer ultrathin films , 2001 .

[214]  J. Mano,et al.  FTIR AND DSC STUDIES OF MECHANICALLY DEFORMED β-PVDF FILMS , 2001 .

[215]  J. Scheinbeim,et al.  Dipolar Intermolecular Interactions, Structural Development, and Electromechanical Properties in Ferroelectric Polymer Blends of Nylon-11 and Poly(vinylidene fluoride) , 2000 .

[216]  Darrell H. Reneker,et al.  Bending instability of electrically charged liquid jets of polymer solutions in electrospinning , 2000 .

[217]  F. Kremer,et al.  Piezoelectric and Pyroelectric Investigations on Microtomized Sections of Single-Crystalline Ferroelectric Liquid Crystalline Elastomers (SC-FLCE) , 1999 .

[218]  Hiroshi Maiwa,et al.  Piezoelectric Measurements with Atomic Force Microscopy , 1998 .

[219]  Eiichi Fukada,et al.  Electromechanical Properties of Poly-L-Lactic Acid , 1998 .

[220]  Hari Singh Nalwa,et al.  Ferroelectric Polymers : Chemistry: Physics, and Applications , 1995 .

[221]  C. Lacabanne,et al.  Cooperative movements associated with the Curie transition in P(VDF-TrFE) copolymers , 1995 .

[222]  R. Gregorio,et al.  Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride) , 1994 .

[223]  B. Khomami,et al.  PROCESSING-PROPERTY INTERACTIONS IN VINYLIDENE FLUORIDE/TRIFLUOROETHYLENE RANDOM COPOLYMERS , 1991 .

[224]  J. Scheinbeim,et al.  High-temperature characteristics of nylon-11 and nylon-7 piezoelectrics , 1991 .

[225]  T. Furukawa Ferroelectric properties of vinylidene fluoride copolymers , 1989 .

[226]  P. Geil,et al.  Deformation and transformation mechanisms of poly(vinylidene fluoride) (PVF2) , 1989 .

[227]  Roger W. Whatmore,et al.  Pyroelectric devices and materials , 1986 .

[228]  Eiichi Fukada,et al.  Piezoelectric properties of poly-β-hydroxybutyrate and copolymers of β-hydroxybutyrate and β-hydroxyvalerate☆ , 1986 .

[229]  J. Rabolt,et al.  Effect of thermal and solution history on the Curie point of VF2‐TrFE random copolymers , 1986 .

[230]  H. Ohigashi,et al.  Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers , 1986 .

[231]  V. Schmidt,et al.  N.m.r. study of the ferroelectric phase transition in a 7030mol% copolymer of vinylidene fluoride (VF2) and trifluoroethylene (TrFE) , 1985 .

[232]  K. Suzuki,et al.  Piezoelectricity and pyroelectricity in vinylidene fluoride/trifluoroethylene copolymers , 1984 .

[233]  A. J. Lovinger,et al.  Crystallographic changes characterizing the Curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 2. Oriented or poled samples , 1983 .

[234]  Takeshi Yamada,et al.  Ferroelectric properties of vinylidene fluoride‐trifluoroethylene copolymers , 1981 .

[235]  A. J. Lovinger Conformational defects and associated molecular motions in crystalline poly(vinylidene fluoride) , 1981 .

[236]  K. Matsushige,et al.  The II-I crystal transformation of poly(vinylidene fluoride) under tensile and compressional stresses , 1980 .

[237]  A. Garton,et al.  Effect of oxygen on the polymerization of vinyl chloride. I. Kinetic features , 1973 .

[238]  J. J. Cupal,et al.  Dielectric, piezoelectric, and electromechanical coupling constants of zinc oxide crystals , 1968 .

[239]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[240]  Don Berlincourt,et al.  Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate , 1958 .

[241]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[242]  Mengyuan Li,et al.  The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). , 2016, Nature materials.

[243]  M. Latifi,et al.  Investigation of β phase formation in piezoelectric response of electrospun polyvinylidene fluoride nanofibers: LiCl additive and increasing fibers tension , 2016 .

[244]  Jaehwan Kim,et al.  Multi Functional and Smart Graphene Filled Polymers as Piezoelectrics and Actuators , 2015 .

[245]  Zheng Zhang,et al.  High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF , 2015 .

[246]  Christopher R. Bowen,et al.  Piezoelectric and ferroelectric materials and structures for energy harvesting applications , 2014 .

[247]  J. González,et al.  Magnetic Field Assisted Electrospinning of Nanofibers Using Solutions with PVDF and Fe 3 O 4 Nanoparticles , 2014 .

[248]  V. Causin,et al.  The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly(vinylidene fluoride) , 2013 .

[249]  W. Marsden I and J , 2012 .

[250]  Xudong Wang,et al.  Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale , 2012 .

[251]  Jingsi Xie,et al.  Cyclic energy harvesting from pyroelectric materials , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[252]  Zhijun Hu,et al.  Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. , 2009, Nature materials.

[253]  Qiming Zhang,et al.  Electropolymers for Mechatronics and Artificial Muscles , 2008 .

[254]  Neil Genzlinger A. and Q , 2006 .

[255]  A. Renault,et al.  Annealing effects in ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymers: real-time studies using synchrotron radiation , 1991 .

[256]  Dandan Song,et al.  Formation of β-phase microcrystals from the melt of PVF2-PMMA blends induced by quenching , 1990 .