THz TDS study of several sp2 carbon materials: Graphite, needle coke and graphene oxides

Abstract Terahertz time-domain spectroscopy has been used to probe the properties of four carbon allotropes with a sequenced c-axis stacking order: single-layer reduced graphene oxide, few-layer graphene oxide, disordered needle coke and highly organized graphite. The results obtained demonstrate a very high sensitivity to the structural characteristics of the tested samples. The multi-layer materials show the same type of spectral response with strong variations in the attenuation in the whole terahertz band depending on their constructural organization. The single-layer sample shows a distinct response where conductive effects dominate. The results obtained are consistent with theoretical investigations using semi-empirical quantum chemistry methods.

[1]  B. Fischer,et al.  Dynamic range in terahertz time-domain transmission and reflection spectroscopy. , 2005, Optics letters.

[2]  B. Gelmont,et al.  THz-Spectroscopy of Biological Molecules , 2003, Journal of biological physics.

[3]  Abdul-Rahman Allouche,et al.  Gabedit—A graphical user interface for computational chemistry softwares , 2011, J. Comput. Chem..

[4]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[5]  Julio Daniel Carvalho Maia,et al.  GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations. , 2012, Journal of chemical theory and computation.

[6]  S. Hagness,et al.  Terahertz-frequency electronic transport in graphene , 2014 .

[7]  J L Beeby,et al.  Physics of amorphous materials , 1984 .

[8]  Morphology of graphene thin film growth on SiC(0001) , 2007, 0710.0877.

[9]  C. Megaridis,et al.  Terahertz shielding of carbon nanomaterials and their composites – A review and applications , 2014 .

[10]  Martin Koch,et al.  Terahertz spectroscopy on polymers: A review of morphological studies , 2011 .

[11]  Xiaoyong He,et al.  Graphene-supported tunable near-IR metamaterials. , 2015, Optics letters.

[12]  J. Capmany,et al.  Graphene Integrated Microwave Photonics , 2014, Journal of Lightwave Technology.

[13]  Schober,et al.  Low-frequency vibrations in a model glass. , 1996, Physical review. B, Condensed matter.

[14]  Lei Liu,et al.  Graphene for Reconfigurable Terahertz Optoelectronics , 2013, Proceedings of the IEEE.

[15]  Seong-Ho Cho,et al.  Nonlinear optics: Graphene–silicon fusion , 2012 .

[16]  R. Gupta,et al.  Graphite, graphene, and their polymer nanocomposites , 2012 .

[17]  Xiaoyong He,et al.  Tunable terahertz graphene metamaterials , 2015 .

[18]  S. J. Park,et al.  Terahertz conductivity of reduced graphene oxide films. , 2013, Optics express.

[19]  James J. P. Stewart,et al.  Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters , 2012, Journal of Molecular Modeling.

[20]  S R Elliott,et al.  Universal features of terahertz absorption in disordered materials. , 2006, Physical review letters.

[21]  Yong‐Lai Zhang,et al.  Photoreduction of Graphene Oxides: Methods, Properties, and Applications , 2014 .

[22]  X. F. Fan,et al.  Raman spectroscopy of epitaxial graphene on a SiC substrate , 2008 .

[23]  José Capmany,et al.  Integrated microwave photonics , 2013 .

[24]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[25]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[26]  J. A. Conesa,et al.  Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers , 2007 .

[27]  H. Mark,et al.  Über die Kristallstruktur des Graphits , 1924 .

[28]  Chongwu Zhou,et al.  Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. , 2010, ACS nano.

[29]  R. R. Hartmann,et al.  Terahertz science and technology of carbon nanomaterials , 2013, Nanotechnology.

[30]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[31]  J. Coutaz,et al.  A reliable method for extraction of material parameters in terahertz time-domain spectroscopy , 1996 .

[32]  Jia-Ming Liu,et al.  Terahertz optical properties of multilayer graphene: Experimental observation of strong dependence on stacking arrangements and misorientation angles , 2012 .

[33]  A. Bostwick,et al.  Giant Faraday rotation in single- and multilayer graphene , 2010, 1007.5286.

[34]  L. M. Navas-Gracia,et al.  2D to 3D transition of polymeric carbon nitride nanosheets , 2014 .

[35]  S. L. Dexheimer,et al.  Terahertz Spectroscopy : Principles and Applications , 2007 .