Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy-Widom distribution

We derive efficient recursive formulas giving the exact distribution of the largest eigenvalue for finite dimensional real Wishart matrices and for the Gaussian Orthogonal Ensemble (GOE). In comparing the exact distribution with the limiting distribution of large random matrices, we also found that the Tracy–Widom law can be approximated by a properly scaled and shifted gamma distribution, with great accuracy for the values of common interest in statistical applications.

[1]  Noureddine El Karoui On the largest eigenvalue of Wishart matrices with identity covariance when n, p and p/n tend to infinity , 2003, math/0309355.

[2]  I. Johnstone High Dimensional Statistical Inference and Random Matrices , 2006, math/0611589.

[3]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[4]  Andrew T. A. Wood,et al.  Laplace approximations for hypergeometric functions with matrix argument , 2002 .

[5]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[6]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[7]  Alan Edelman,et al.  Tails of Condition Number Distributions , 2005, SIAM J. Matrix Anal. Appl..

[8]  Matthew R. McKay,et al.  Performance Analysis of MIMO-MRC in Double-Correlated Rayleigh Environments , 2005, IEEE Transactions on Communications.

[9]  Marco Chiani,et al.  Joint distribution of an arbitrary subset of the ordered eigenvalues of Wishart matrices , 2008, 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.

[10]  C. Khatri Non-central distributions ofith largest characteristic roots of three matrices concerning complex multivariate normal populations , 1969 .

[11]  Zongming Ma,et al.  FAST APPROACH TO THE TRACY-WIDOM LAW AT THE EDGE OF GOE AND GUE. , 2011, The annals of applied probability : an official journal of the Institute of Mathematical Statistics.

[12]  Craig A. Tracy,et al.  Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .

[13]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[14]  Moe Z. Win,et al.  On the marginal distribution of the eigenvalues of wishart matrices , 2009, IEEE Transactions on Communications.

[15]  de Ng Dick Bruijn On some multiple integrals involving determinants , 1955 .

[16]  Noureddine El Karoui Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices , 2005, math/0503109.

[17]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[18]  Folkmar Bornemann,et al.  On the Numerical Evaluation of Distributions in Random Matrix Theory: A Review , 2009, 0904.1581.

[19]  C. Tracy,et al.  The Distributions of Random Matrix Theory and their Applications , 2009 .

[20]  Hiroki Hashiguchi,et al.  Holonomic gradient method for the distribution function of the largest root of a Wishart matrix , 2012, 1201.0472.

[21]  Boaz Nadler,et al.  On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart matrix , 2011, J. Multivar. Anal..

[22]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[23]  Zizhong Chen,et al.  Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[24]  S. Péché Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.

[25]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[26]  Ranjan K. Mallik,et al.  Analysis of transmit-receive diversity in Rayleigh fading , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[27]  C. Khatri Distribution of the Largest or the Smallest Characteristic Root Under Null Hypothesis Concerning Complex Multivariate Normal Populations , 1964 .

[28]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[29]  Olav Tirkkonen,et al.  Analysis of Scaled Largest Eigenvalue Based Detection for Spectrum Sensing , 2011, 2011 IEEE International Conference on Communications (ICC).

[30]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[31]  M. Z. Win,et al.  MIMO Networks : The Effects of Interference , 2009 .

[32]  Zongming Ma,et al.  Accuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices , 2012, 1203.0839.

[33]  Marco Chiani,et al.  Reduced Complexity Power Allocation Strategies for MIMO Systems With Singular Value Decomposition , 2012, IEEE Transactions on Vehicular Technology.

[34]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[35]  Herbert Spohn,et al.  Exact Scaling Functions for One-Dimensional Stationary KPZ Growth , 2004 .

[36]  Mohamed-Slim Alouini,et al.  Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems , 2003, IEEE J. Sel. Areas Commun..

[37]  Ronald W. Butler,et al.  Exact distributional computations for Roy’s statistic and the largest eigenvalue of a Wishart distribution , 2011, Stat. Comput..

[38]  Moe Z. Win,et al.  On the capacity of spatially correlated MIMO Rayleigh-fading channels , 2003, IEEE Trans. Inf. Theory.

[39]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .