The effect of oxygen crossover on the anode of a Li-O(2) battery using an ether-based solvent: insights from experimental and computational studies.

Crosstown traffic: Further development of Li-O(2) batteries may eventually lead to their use in transportation applications. One problem that needs to be addressed is electrolyte decomposition, which has been partially mitigated by using ether- rather than carbonate-based solvents. The influence of oxygen crossover from the cathode to the anode on electrolyte, and lithium anode, decomposition in ether-based Li-O(2) batteries is investigated.

[1]  L. Curtiss,et al.  Gaussian-4 theory using reduced order perturbation theory. , 2007, The Journal of chemical physics.

[2]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[3]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[4]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[5]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[6]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[7]  A. Dey Lithium anode film and organic and inorganic electrolyte batteries , 1977 .

[8]  G. Graff,et al.  Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage , 2010 .

[9]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[10]  K. Brandt,et al.  Historical development of secondary lithium batteries , 1994 .

[11]  Stefan A. Freunberger,et al.  Li-O2 battery with a dimethylformamide electrolyte. , 2012, Journal of the American Chemical Society.

[12]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[13]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[14]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[15]  M. Armand,et al.  Building better batteries , 2008, Nature.

[16]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[17]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[18]  Jun Lu,et al.  Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes , 2011 .

[19]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[20]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[21]  Yuyan Shao,et al.  Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective , 2012 .

[22]  Linda F. Nazar,et al.  Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. , 2012, Journal of the American Chemical Society.

[23]  Kai Xie,et al.  Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li–O2 batteries , 2012 .

[24]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[25]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[26]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[27]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[28]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[29]  Dh Shin Dong Hyeop Shin,et al.  Control of the Preferred Orientation of Cu(In,Ga)Se2 Thin Film by the Surface Modification of Mo Film , 2011 .

[30]  Ji‐Guang Zhang,et al.  Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes , 2012 .

[31]  Hun‐Gi Jung,et al.  An improved high-performance lithium-air battery. , 2012, Nature chemistry.

[32]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[33]  Rajeev S. Assary,et al.  Computational Studies of Polysiloxanes: Oxidation Potentials and Decomposition Reactions , 2011 .

[34]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[35]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[36]  Peter G. Bruce,et al.  Die Lithium‐Sauerstoff‐Batterie mit etherbasierten Elektrolyten , 2011 .

[37]  Hui Yang,et al.  A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy , 2005 .

[38]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME- LiPF6 ∕ O2 Battery , 2011 .

[39]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .