Discretization of integrals on compact metric measure spaces

Abstract Let μ be a Borel probability measure on a compact path-connected metric space ( X , ρ ) for which there exist constants c , β ≥ 1 such that μ ( B ) ≥ c r β for every open ball B ⊂ X of radius r > 0 . For a class of Lipschitz functions Φ : [ 0 , ∞ ) → R that are piecewise within a finite-dimensional subspace of continuous functions, we prove under certain mild conditions on the metric ρ and the measure μ that for each positive integer N ≥ 2 , and each g ∈ L ∞ ( X , d μ ) with ‖ g ‖ ∞ = 1 , there exist points y 1 , … , y N ∈ X and real numbers λ 1 , … , λ N such that for any x ∈ X , | ∫ X Φ ( ρ ( x , y ) ) g ( y ) d μ ( y ) − ∑ j = 1 N λ j Φ ( ρ ( x , y j ) ) | ⩽ C N − 1 2 − 3 2 β log ⁡ N , where the constant C > 0 is independent of N and g. In the case when X is the unit sphere S d of R d + 1 with the usual geodesic distance, we also prove that the constant C here is independent of the dimension d. Our estimates are better than those obtained from the standard Monte Carlo methods, which typically yield a weaker upper bound N − 1 2 log ⁡ N .

[1]  Yuan Xu,et al.  ORTHOGONAL POLYNOMIALS AND CUBATURE FORMULAE ON SPHERES AND ON BALLS , 1998 .

[2]  M. Cotronei,et al.  Beyond B-splines: exponential pseudo-splines and subdivision schemes reproducing exponential polynomials , 2017 .

[3]  Andriy Bondarenko,et al.  Well-Separated Spherical Designs , 2013, 1303.5991.

[4]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[5]  T. O’Neil Geometric Measure Theory , 2002 .

[6]  G. Petrova Cubature formulae for spheres, simplices and balls , 2004 .

[7]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[8]  V. Temlyakov,et al.  Integral norm discretization and related problems , 2018, Russian Mathematical Surveys.

[9]  J. Lindenstrauss,et al.  Distribution of points on spheres and approximation by zonotopes , 1988 .

[10]  L. Gemignani,et al.  Exponential pseudo-splines: Looking beyond exponential B-splines , 2016 .

[11]  Heping Wang,et al.  Optimal Cubature Formulas in Weighted Besov Spaces with A∞ Weights on Multivariate Domains , 2013 .

[12]  Janin Jäger,et al.  Pólya-type criteria for conditional strict positive definiteness of functions on spheres , 2020, J. Approx. Theory.

[13]  M. Buhmann Radial functions on compact support , 1998 .

[14]  John M. Sullivan Sphere packings give an explicit bound for the Besicovitch Covering Theorem , 1994 .

[15]  Janin Jäger,et al.  Multiply monotone functions for radial basis function interpolation: Extensions and new kernels , 2020, J. Approx. Theory.

[16]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[17]  Yuan Xu,et al.  Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .

[18]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[19]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[20]  Feng Dai,et al.  Approximation of smooth functions on compact two-point homogeneous spaces , 2005, math/0510007.

[21]  Martin D. Buhmann,et al.  A new class of radial basis functions with compact support , 2001, Math. Comput..

[22]  Amos Ron,et al.  Exponential box splines , 1988 .

[23]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[24]  Zoltán Füredi,et al.  On the best constant for the Besicovitch covering theorem , 1994 .