Discretization of integrals on compact metric measure spaces
暂无分享,去创建一个
Feng Dai | Martin D. Buhmann | Yeli Niu | M. Buhmann | F. Dai | Yeli Niu
[1] Yuan Xu,et al. ORTHOGONAL POLYNOMIALS AND CUBATURE FORMULAE ON SPHERES AND ON BALLS , 1998 .
[2] M. Cotronei,et al. Beyond B-splines: exponential pseudo-splines and subdivision schemes reproducing exponential polynomials , 2017 .
[3] Andriy Bondarenko,et al. Well-Separated Spherical Designs , 2013, 1303.5991.
[4] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[5] T. O’Neil. Geometric Measure Theory , 2002 .
[6] G. Petrova. Cubature formulae for spheres, simplices and balls , 2004 .
[7] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[8] V. Temlyakov,et al. Integral norm discretization and related problems , 2018, Russian Mathematical Surveys.
[9] J. Lindenstrauss,et al. Distribution of points on spheres and approximation by zonotopes , 1988 .
[10] L. Gemignani,et al. Exponential pseudo-splines: Looking beyond exponential B-splines , 2016 .
[11] Heping Wang,et al. Optimal Cubature Formulas in Weighted Besov Spaces with A∞ Weights on Multivariate Domains , 2013 .
[12] Janin Jäger,et al. Pólya-type criteria for conditional strict positive definiteness of functions on spheres , 2020, J. Approx. Theory.
[13] M. Buhmann. Radial functions on compact support , 1998 .
[14] John M. Sullivan. Sphere packings give an explicit bound for the Besicovitch Covering Theorem , 1994 .
[15] Janin Jäger,et al. Multiply monotone functions for radial basis function interpolation: Extensions and new kernels , 2020, J. Approx. Theory.
[16] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[17] Yuan Xu,et al. Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .
[18] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[19] Martin D. Buhmann,et al. Radial Basis Functions: Theory and Implementations: Preface , 2003 .
[20] Feng Dai,et al. Approximation of smooth functions on compact two-point homogeneous spaces , 2005, math/0510007.
[21] Martin D. Buhmann,et al. A new class of radial basis functions with compact support , 2001, Math. Comput..
[22] Amos Ron,et al. Exponential box splines , 1988 .
[23] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[24] Zoltán Füredi,et al. On the best constant for the Besicovitch covering theorem , 1994 .