Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion

Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al12W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs.

[1]  A. Bouhemadou,et al.  FP-LAPW study of the fundamental properties of the cubic spinel CdAl2O4 , 2011 .

[2]  D. G. Pettifor,et al.  Theoretical predictions of structure and related properties of intermetallics , 1992 .

[3]  R. Akchurin,et al.  Evaluation of elastic constants of AlN, GaN, and InN , 1998 .

[4]  A. Bouhemadou,et al.  Structural, elastic, electronic and thermal properties of the cubic perovskite-type BaSnO3 , 2010 .

[5]  H. Zhang,et al.  First-principles study on alloying stability, electronic structure, and mechanical properties of Al-based intermetallics , 2011 .

[6]  Z. Hou,et al.  Elasticity, electronic structure, and dielectric property of cubic SrHfO3 from first‐principles , 2009 .

[7]  D. Connétable,et al.  First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi , 2009 .

[8]  Mingwei Chen,et al.  Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility , 2008 .

[9]  Walter Steurer,et al.  Transition Metal Borides: Superhard versus Ultra‐incompressible , 2008 .

[10]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[11]  J. Cahn,et al.  Icosahedral symmetry versus local icosahedral environments in Al–Mn alloys from NMR , 1987, Nature.

[12]  Dianzhong Li,et al.  Modeling hardness of polycrystalline materials and bulk metallic glasses , 2011 .

[13]  L. F. Mondolfo,et al.  Structure of Some Aluminium-Iron-Magnesium-Manganese- Silicon Alloys , 1975 .

[14]  H. Inui,et al.  Mechanical and thermal properties of single crystals of the type-I clathrate compounds Ba8Ga16Ge30 and Sr8Ga16Ge30 , 2008 .

[15]  Li-Min Wang,et al.  Bulk Re2C: Crystal Structure, Hardness, and Ultra-incompressibility , 2010 .

[16]  Dianzhong Li,et al.  Intrinsic Correlation between Hardness and Elasticity in Polycrystalline Materials and Bulk Metallic Glasses , 2011, 1102.4063.

[17]  Yusheng Zhao,et al.  First-principles prediction of mechanical properties of gamma-boron , 2009 .

[18]  D. Nguyen-Manh,et al.  Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides , 2005 .

[19]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[20]  Yuehui He,et al.  The structural stability, elastic constants and electronic structure of Al–Sr intermetallics by first-principles calculations , 2011 .

[21]  J. Etheridge,et al.  The Bonding Electron Density in Aluminum , 2011, Science.

[22]  J. Adam,et al.  The crystal structure of WAl12, MoAl12 and (Mn, Cr)Al12 , 1954 .

[23]  J. Hafner,et al.  Interatomic bonding, elastic properties, and ideal strength of transition metal aluminides: A case study for Al 3 ( V , Ti ) , 2005 .

[24]  Julong He,et al.  Ionicities of boron-boron bonds in B(12) icosahedra. , 2005, Physical review letters.

[25]  L. Dubrovinsky,et al.  Superhard semiconducting optically transparent high pressure phase of boron. , 2009, Physical review letters.

[26]  J. Hafner,et al.  Covalent bonding and bandgap formation in intermetallic compounds: a case study for Al3V , 2002 .

[27]  Yuehui He,et al.  First-principles investigations of elastic, electronic and thermodynamic properties of Al12X (X = Mo, W and Re) , 2012 .

[28]  Kimura,et al.  Covalent bonds in AlMnSi icosahedral quasicrystalline approximant , 2000, Physical review letters.

[29]  A. Bouhemadou,et al.  Structural and elastic properties under pressure effect of the cubic antiperovskite compounds ANCa3 (A = P, As, Sb, and Bi) , 2009 .

[30]  A Hirata,et al.  Atomic structure of nanoclusters in oxide-dispersion-strengthened steels. , 2011, Nature materials.

[31]  H. Gong Ideal mechanical strengths of Ir and Ir3Zr , 2008 .

[32]  E. S. Zouboulis,et al.  Elastic constants of boron nitride , 1994 .

[33]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[34]  Wei Zhou,et al.  Structural, Elastic, and Electronic Properties of Al-Cu Intermetallics from First-Principles Calculations , 2009 .

[35]  Z. Hou Effects of Cu, N, and Li intercalation on the structural stability and electronic structure of cubic Cu3N , 2008 .

[36]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[37]  Börje Johansson,et al.  Cubic Hf3N4 and Zr3N4: A class of hard materials , 2003 .

[38]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[39]  D. Peckner The Strengthening of Metals , 1964 .

[40]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[41]  L. Dubrovinsky,et al.  Comment on "Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure" , 2007, Science.

[42]  O. Anderson,et al.  Elastic constants of corundum up to 1825 K , 1989 .

[43]  Stephen K. Ritter,et al.  FUTURE OF METALS , 2009 .

[44]  Siyuan Zhang,et al.  Hardness of covalent crystals. , 2003, Physical review letters.

[45]  K. Mcclellan,et al.  Room temperature single crystal elastic constants of boron carbide , 2001 .

[46]  D. Miracle A Physical Model for Metallic Glass Structures: An Introduction and Update , 2012 .

[47]  W. Wang,et al.  NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses. , 2011, Physical review letters.

[48]  R. Lakes,et al.  Poisson's ratio and modern materials , 2011, Nature Materials.

[49]  Alan Francis Wright,et al.  Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN , 1997 .

[50]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[51]  A. Inoue,et al.  Electronic structure of quasicrystals studied by ultrahigh-energy-resolution photoemission spectroscopy , 1997 .

[52]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[53]  A. R. Oganov,et al.  On the hardness of a new boron phase, orthorhombic γ-B28 , 2008 .

[54]  Y. Ciftci,et al.  The structural, electronic, elastic, vibrational, and thermodynamic properties of HoX (X=Sb, Bi) , 2010 .

[55]  Z. Zhong,et al.  An unexpected softening from WB3 to WB4 , 2012 .

[56]  Na Liu,et al.  Elastic constants and thermodynamic properties of Mg 2 Si x Sn 1− x from first-principles calculations , 2009 .

[57]  H. Belkhir,et al.  Structural, electronic, elastic and optical properties of fluoro-perovskite KZnF3 , 2011 .

[58]  A. Bouhemadou,et al.  Prediction study of the structural, elastic and electronic properties of ANSr3 (A = As, Sb and Bi) , 2009 .

[59]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[60]  A. Bouhemadou Elastic properties of mono- and polycrystalline RCRh3 (R=Sc,Y,La and Lu) under pressure effect , 2009 .

[61]  Alan Howard Sir Cottrell,et al.  Introduction to the modern theory of metals , 1988 .

[62]  J. Tse,et al.  Ab initio study of elastic properties of Ir and Ir3X compounds , 2003 .

[63]  A. Inoue,et al.  Kinetic evidence for the structural similarity between a supercooled liquid and an icosahedral phase in Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass , 2001 .

[64]  H. Gou,et al.  Pressure-induced incompressibility of ReC and effect of metallic bonding on its hardness , 2008 .

[65]  D. Maouche,et al.  Structural, elastic, electronic and optical properties of the cubic perovskites CaXO3 (X=Hf and Sn) , 2010 .

[66]  Yong Pan,et al.  The electronic, elastic and structural properties of Pd–Zr intermetallic , 2012 .

[67]  Joshua R. Smith,et al.  Prediction of structural, electronic and elastic properties of Y2Ti2O7 and Y2TiO5 , 2010 .

[68]  L. Louail,et al.  Ab initio comparative study of the structural, elastic and electronic properties of SnAMn3(A=N,C) antiperovskite cubic compounds , 2010 .

[69]  J. H. He,et al.  Icosahedral short-range order in amorphous alloys. , 2004, Physical review letters.

[70]  S. Tolbert,et al.  Advancements in the Search for Superhard Ultra‐Incompressible Metal Borides , 2009 .

[71]  Zi-kui Liu,et al.  Elastic constants of binary Mg compounds from first-principles calculations , 2009 .

[72]  Yanming Ma,et al.  Density functional study of elastic and vibrational properties of the Heusler-type alloys Fe2VAl and Fe2VGa , 2009, 0905.3909.

[73]  L. Hultman,et al.  Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites : A first-principles study , 2009 .

[74]  R. Singh,et al.  The elastic and thermodynamic properties of antiperovskites: MCNi3 , 2010 .

[75]  G. A. Alers,et al.  Low‐Temperature Elastic Moduli of Aluminum , 1964 .

[76]  Jirí Vackár,et al.  Hardness of covalent and ionic crystals: first-principle calculations. , 2006, Physical review letters.

[77]  J. Rodgers,et al.  Alloying effects on elastic properties of TiN-based nitrides , 2003 .

[78]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[79]  P. Jha,et al.  First principles lattice dynamical study of the cubic antiperovskite compounds AsNBa3 and SbNBa3 , 2010 .

[80]  G. Steinle-Neumann,et al.  Ab-initio simulation of elastic constants for some ceramic materials , 2007 .

[81]  R. E. Smallman Introduction to the modern theory of metals , 1989 .

[82]  Yanming Ma,et al.  Lattice dynamics and elastic properties of the 4f electron system: CeN , 2011 .

[83]  T. Sota,et al.  Elastic constants of III-V compound semiconductors : modification of Keyes' relation , 1996 .

[84]  Dianzhong Li,et al.  Hardness of T-carbon: Density functional theory calculations , 2011, 1108.2570.

[85]  Richard B. Kaner,et al.  Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2 , 2008 .

[86]  M. Kadri,et al.  Elastic and electronic properties of fluorite‐like boride Be2B and its ternary compounds XBeB (X = Na, Mg, Al) from first principles , 2010 .

[87]  H. Aourag,et al.  Prediction study of elastic properties under pressure effect for zincblende BN, AlN, GaN and InN , 2004 .

[88]  V. Milman,et al.  Elastic properties of TiB2 and MgB2 , 2001 .

[89]  Keon Wook Kang,et al.  Brittle and ductile fracture of semiconductor nanowires – molecular dynamics simulations , 2007 .

[90]  H. Sigg,et al.  Compositional dependence of the elastic constants and the lattice parameter of Al x Ga 1-x As , 1999 .

[91]  A. K. Niessen,et al.  Cohesion in metals , 1988 .

[92]  L. Chen,et al.  Ab initio examination of ductility features of fcc metals , 2009 .

[93]  R. Valiev,et al.  Nanostructuring of metals by severe plastic deformation for advanced properties , 2004, Nature materials.

[94]  James R. Morris,et al.  Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds , 2004 .

[95]  Z. Kou,et al.  Is Rhenium Diboride a Superhard Material? , 2008 .

[96]  Xinlu Cheng,et al.  Phase transition and elasticity of CdO under pressure , 2009 .

[97]  L. Daemen,et al.  Superhard B–C–N materials synthesized in nanostructured bulks , 2002 .

[98]  M. Rabah,et al.  Structural and elastic properties of antiperovskites XNBa3 (X=As, Sb) under pressure effect , 2009 .

[99]  R. French,et al.  Vibrational Spectroscopy of Aluminum Nitride , 1993 .

[100]  R. Andrievski Superhard materials based on nanostructured high-melting point compounds: achievements and perspectives , 2001 .

[101]  A. Bouhemadou,et al.  Structural, elastic and electronic properties of XNCa3 (X = Ge, Sn and Pb) compounds , 2009 .

[102]  M. Koehler,et al.  Elastic moduli of superhard rhenium diboride , 2009 .

[103]  Colin Eaborn,et al.  Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology. New Series , 1971 .

[104]  Xinlu Cheng,et al.  First‐principles calculations on elasticity and the thermodynamic properties of TaC under pressure , 2009 .

[105]  Kuiying Chen,et al.  Elastic properties, thermal expansion coefficients and electronic structures of Ti0.75X0.25C carbides , 2007 .

[106]  A. Bouhemadou,et al.  Ab initio investigation of the structural, elastic and electronic properties of the anti-perovskite TlNCa3 , 2010 .

[107]  A. Bouhemadou,et al.  Density functional study of the structural, electronic, elastic and thermodynamic properties of ACRu3 (A = V, Nb and Ta) compounds , 2011 .

[108]  G. Hart,et al.  First-principles elastic constants and electronic structure of α-Pt2Si and PtSi , 2000, cond-mat/0008200.

[109]  Defeng Zhou,et al.  Trends in elasticity and electronic structure of 5d transition metal diborides: first-principles calculations , 2007 .

[110]  M. Maamache,et al.  First-principles study of the structural, electronic, and magnetic properties of InCCo3 and InNCo3 , 2011 .

[111]  M. Mezouar,et al.  Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5. , 2009, Physical review letters.

[112]  Chen,et al.  Elastic constants of NbC and MoN: Instability of B1-MoN. , 1988, Physical review. B, Condensed matter.

[113]  Richard B. Kaner,et al.  Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure , 2007, Science.

[114]  M. Mezouar,et al.  Synthesis of superhard cubic BC2N , 2001 .

[115]  R. Singh,et al.  First-principle study on structural, elastic and electronic properties of rare-earth intermetallic compounds: TbCu and TbZn , 2011 .

[116]  Hongzhi Fu,et al.  Structural and elastic properties of ZrC under high pressure , 2009 .

[117]  R. Kaner,et al.  Preparation and properties of metallic, superhard rhenium diboride crystals. , 2008, Journal of the American Chemical Society.

[118]  Dianzhong Li,et al.  Structure, bonding, and possible superhardness of CrB4 , 2012 .

[119]  M. H. Braga,et al.  CALPHAD : Computer Coupling of Phase Diagrams and Thermochemistry , 2009 .

[120]  Yong Du,et al.  First-principles calculations of the thermodynamic and elastic properties of the L12-based Al3RE (RE = Sc, Y, La–Lu) , 2008 .

[121]  David M. Teter,et al.  Computational Alchemy: The Search for New Superhard Materials , 1998 .

[122]  L. Bendersky,et al.  Quasicrystalline phases and their approximants in Al-Mn-Zn alloys , 1997 .

[123]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[124]  Y. Liu,et al.  First-principles study on the mechanical properties of vanadium carbides VC and V4C3 , 2008 .

[125]  Akihiko Hirata,et al.  Direct observation of local atomic order in a metallic glass. , 2011, Nature materials.

[126]  Shibing Wang,et al.  Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. , 2012, Physical review letters.

[127]  T. Yildirim,et al.  Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study , 2007, 0708.3694.

[128]  Wai-Yim Ching,et al.  Ab Initio Calculation of Elastic Constants of Ceramic Crystals , 2007 .

[129]  J. Rodgers,et al.  Elastic properties of platinum Rh and Rh3X compounds , 2004 .

[130]  K. Ishida,et al.  Cobalt-Base High-Temperature Alloys , 2006, Science.