Tracing the History of the Baltic Sea Oxygen Level

In order to guarantee the reproducibility of research results, large research communities, conferences and journals increasingly demand the provision of original research data. Since this is often not possible or desired, a certain tact and sensitivity is needed. With our method, combining provenance and evolution, we can identify the source tuples necessary for the reconstruction of a query result also in temporal databases. To avoid dirty data caused by the inverse evolution, we introduced the what-provenance, which remembers the data types of the source relation.

[1]  Tanja Auge Extended Provenance Management for Data Science Applications , 2020, PhD@VLDB.

[2]  Daniel Deutch,et al.  Provenance for aggregate queries , 2011, PODS.

[3]  Carlo Curino,et al.  Automating the database schema evolution process , 2012, The VLDB Journal.

[4]  Andreas Heuer,et al.  Combining Provenance Management and Schema Evolution , 2018, IPAW.

[5]  Andreas Heuer,et al.  The Theory behind Minimizing Research Data: Result equivalent CHASE-inverse Mappings , 2018, LWDA.

[6]  Andreas Heuer,et al.  Schema Evolution and Reproducibility of Long-term Hydrographic Data Sets at the IOW , 2020, LWDA.

[7]  Ronald Fagin,et al.  Schema Mapping Evolution Through Composition and Inversion , 2011, Schema Matching and Mapping.

[8]  Limsoon Wong,et al.  In Search of Elegance in the Theory and Practice of Computation , 2013, Lecture Notes in Computer Science.

[9]  Haridimos Kondylakis,et al.  VESEL: VisuaL Exploration of Schema Evolution using Provenance Queries , 2019, EDBT/ICDT Workshops.

[10]  Val Tannen,et al.  The Semiring Framework for Database Provenance , 2017, PODS.

[11]  Wolfgang Lehner,et al.  Living in Parallel Realities: Co-Existing Schema Versions with a Bidirectional Database Evolution Language , 2017, SIGMOD Conference.

[12]  Melanie Herschel,et al.  A survey on provenance: What for? What form? What from? , 2017, The VLDB Journal.

[13]  Andreas Heuer,et al.  Privacy Aspects of Provenance Queries , 2021, ArXiv.

[14]  Michael Meier The backchase revisited , 2013, The VLDB Journal.

[15]  Carlo Curino,et al.  Graceful database schema evolution: the PRISM workbench , 2008, Proc. VLDB Endow..

[16]  Erik Manthey,et al.  Beschreibung der Veränderungen von Schemata und Daten am IOW mit Schema-Evolutions-Operatoren , 2020 .

[17]  Jacob Carstensen,et al.  Deoxygenation of the Baltic Sea during the last century , 2014, Proceedings of the National Academy of Sciences.

[18]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[19]  Sanjeev Khanna,et al.  Why and Where: A Characterization of Data Provenance , 2001, ICDT.